2.2 Elementary Functions: Graphs and Transformations

Consider functions \(f(x) = -\frac{1}{4}(x - 3)^2 + 1 \) and \(g(x) = x^2 \).

Question: How are these two functions related to each other?

Answer:

We know how the graph of \(g(x) = x^2 \) looks like.

Question: What can the graph of \(g(x) \) tell us about the graph of \(f(x) \)?

Answer:
We will learn a bunch of elementary functions (like \(g(x) = x^2 \)) which may be used as building blocks to construct something more sophisticated (using their composition and applying various transformations). Knowing how elementary functions behave and what effect a particular transformation has allows us to understand behavior of a more complex function we may construct.

A Beginning Library of Elementary Functions

<table>
<thead>
<tr>
<th>Definition (Basic Elementary Functions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant function: (f(x) = C) ((C) is a real number)</td>
</tr>
<tr>
<td>Identity function: (g(x) = x)</td>
</tr>
<tr>
<td>Square function: (h(x) = x^2)</td>
</tr>
<tr>
<td>Cube function: (m(x) = x^3)</td>
</tr>
<tr>
<td>Square root function: (n(x) = \sqrt{x})</td>
</tr>
<tr>
<td>Cube root function: (p(x) = \sqrt[3]{x})</td>
</tr>
<tr>
<td>Absolute value function: (k(x) =</td>
</tr>
</tbody>
</table>

Example 1

(a) If \(h(x) = 2 \), then \(h(14) = \), \(h(-8) = \).
(b) If \(m(x) = x \), then \(m(-3) = \), \(m(5) = \).
(c) If \(p(x) = x^2 \), then \(p(-2) = \), \(p(2) = \).
(d) If \(f(x) = x^3 \), then \(f(-3) = \), \(f(3) = \).
(e) If \(n(x) = \sqrt{x} \), then \(n(16) = \), \(n(-16) = \).
(f) If \(k(x) = \sqrt[3]{x} \), then \(k(-125) = \), \(k(125) = \).
(g) If \(g(x) = |x| \), then \(g(-2) = \), \(g(0) = \).
Question: How does the graph of $f(x) = \frac{5}{2}$ look like?
Answer:

Question: How does the graph of $f(x) = x^3$ look like?
Answer:

Question: How does the graph of $f(x) = |x|$ look like?
Answer:
Notation. \(\mathbb{R} \) (or \(\mathbb{R} \)) denotes ”all real numbers”.

Graphs, Domains and Ranges of Some Elementary Functions

\[f(x) = |x| = \begin{cases} -x, & \text{if } x < 0 \\ x, & \text{if } x \geq 0 \end{cases} \]
Vertical and Horizontal Shifts

Definition. If a new function is formed by performing an operation on a given function, then the graph of the new function is called a **transformation** of the graph of the original function.

Example 2
Graph the following functions simultaneously in the same coordinate system:

(a) \(y = f(x) = x^2, \ y = g(x) = x^2 + 2, \ y = h(x) = x^2 - 3 \)
(b) \(h = f(x) = x^2, \ y = m(x) = (x + 2)^2, \ y = n(x) = (x - 3)^2 \)
Note that in the previous example we actually had

(a) if $f(x) = x^2$, then $h(x) = x^2 + 2 = f(x) + 2$, $g(x) = x^2 - 3 = f(x) + (-3)$;

(b) if $f(x) = x^2$, then $m(x) = (x + 2)^2 = f(x + 2)$, $n(x) = x^2 - 3 = f(x + (-3))$.

Vertical Shift

Comparing the graphs of $y = f(x) + C$ with the graph of $y = f(x)$, we see that the graph of $y = f(x) + C$ can be obtained from the graph of $y = f(x)$ by **vertically translating (shifting)** the graph of the latter upward C units if C is positive and downward $|C|$ units if C is negative.

Horizontal Shift

Comparing the graphs of $y = f(x + C)$ with the graph of $y = f(x)$, we see that the graph of $y = f(x + C)$ can be obtained from the graph of $y = f(x)$ by **horizontally translating (shifting)** the graph of the latter C units to the left if C is positive and $|C|$ units to the right if C is negative.
Example 3
Identify the functions which graphs are shown below

(a)

(b)
Reflections, Stretches, and Shrinks

Example 4
Graph the following functions simultaneously in the same coordinate system:

(a) $y = f(x) = |x|$, $y = g(x) = 2|x|$, $y = h(x) = \frac{1}{3}2|x|

(b) $h = f(x) = |x|$, $y = m(x) = −2|x|$, $y = n(x) = −\frac{1}{3}2|x|

(a) (b)

Note that:

(a) if $f(x) = |x|$, then $h(x) = 2|x| = 2f(x)$, $g(x) = \frac{1}{3}|x| = \frac{1}{3}f(x)$;

(b) if $f(x) = |x|$, then $h(x) = −2|x| = −2f(x)$, $g(x) = −\frac{1}{3}|x| = −\frac{1}{3}f(x)$;
Reflection, Stretch, and Shrink.

Comparing \(y = Cf(x) \) to \(y = f(x) \), we see that the graph of \(y = Cf(x) \) can be obtained from the graph of \(y = f(x) \) by multiplying each ordinate value of the latter by \(C \). The result is a vertical stretch of the graph of \(y = f(x) \) if \(C > 1 \), a vertical shrink of the graph of \(y = f(x) \) if \(0 < C < 1 \), and a reflection in the \(x \) axis if \(C = -1 \). If \(C \) is a negative number other than -1, then the result is a combination of a reflection in the \(x \) axis and either a vertical stretch or a vertical shrink.

Summary

<table>
<thead>
<tr>
<th>SUMMARY</th>
<th>Graph Transformations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertical Translation:</td>
<td></td>
</tr>
<tr>
<td>(y = f(x) + k)</td>
<td>(k > 0) Shift graph of (y = f(x)) up (k) units. (k < 0) Shift graph of (y = f(x)) down (</td>
</tr>
<tr>
<td>Horizontal Translation:</td>
<td></td>
</tr>
<tr>
<td>(y = f(x + h))</td>
<td>(h > 0) Shift graph of (y = f(x)) left (h) units. (h < 0) Shift graph of (y = f(x)) right (</td>
</tr>
<tr>
<td>Reflection:</td>
<td></td>
</tr>
<tr>
<td>(y = -f(x))</td>
<td>Reflect the graph of (y = f(x)) in the (x) axis.</td>
</tr>
<tr>
<td>Vertical Stretch and Shrink:</td>
<td></td>
</tr>
<tr>
<td>(y = Af(x))</td>
<td>(A > 1) Stretch graph of (y = f(x)) vertically by multiplying each ordinate value by (A). (0 < A < 1) Shrink graph of (y = f(x)) vertically by multiplying each ordinate value by (A).</td>
</tr>
</tbody>
</table>
Example 5 (Combing Transformations)
Graph $f(x) = -\frac{1}{4}(x - 3)^2 + 1$
Piecewise-Defined Functions

We have already seen that

\[f(x) = |x| = \begin{cases}
-x, & \text{if } x < 0 \\
x, & \text{if } x \geq 0
\end{cases} \]

The function is defined by different rules for different parts of its domain.

Definition. Functions whose definitions involve more than one rule are called **piecewise-defined functions**.

Question: How to graph a piecewise-defined functions?

Answer: Graph each rule over the appropriate portion of the domain.

Example 6 (Graphing Piecewise-Defined Functions)

Graph

\[y = f(x) = \begin{cases}
(x + 2)^2, & \text{if } x < 0 \\
-2x + 4, & \text{if } 0 \leq x < 3 \\
\sqrt{x - 3}, & \text{if } x \geq 3
\end{cases} \]