EIGENVALUES and EIGENVECTORS

Definitions

Given an $n\times n$ matrix A, some $\lambda$ and ${\bf x}\neq {\bf0}$, with

\begin{displaymath}A{\bf x}= \lambda{\bf x}.
\end{displaymath}

Properties

The CHARACTERISTIC EQUATION

Characteristic Polynomial

Similarity

DIAGONALIZATION

Definition:
A square matrix A is diagonalizable
if A is similar to a diagonal matrix D ( A = PDP-1).

Theorems:
Let A be an $n\times n$ matrix.

Diagonalization Method:
For an $n\times n$ matrix A
1.
find the eigenvalues for A, $\lambda_1, \lambda_2, \ldots, \lambda_n$,
2.
find the eigenvectors for A, $\{{\bf v}_1, {\bf v}_2, \ldots, {\bf v}_n\}$, and
3.
construct $P = [{\bf v}_1\ {\bf v}_2\ \ldots\ {\bf v}_n]$ and

\begin{displaymath}D = \left[
\begin{array}{cccc}
\lambda_1 & 0 & \ldots & 0 \\ ...
...s & \vdots \\
0 & 0 & \ldots & \lambda_n
\end{array}\right] .
\end{displaymath}



Alan C Genz
2000-07-06