INTRODUCTION to DETERMINANTS
det(A):
For a square matrix A
Easy Determinants

PROPERTIES OF DETERMINANTS
Row Operations:
Other Properties:

DETERMINANT FORMULAS
Cramer's Rule:
Let $A_i({\bf b})$ denote A with col i replaced by ${\bf b}$.
The solution to $A{\bf x}\ = {\bf b}$ is given by $x_i = det(A_i({\bf b}))/det(A)$, for $i=1,2,\ldots,n$.
A-1 Formula:
Using adj(A) to denote the adjugate or adjoint of A
(adj(A) is the transposed matrix of cofactors Cij for A),

\begin{displaymath}A^{-1} = \frac{1}{det(A)} adj(A) =
\frac{1}{det A}\left[ \be...
...\vdots \\
C_{1n}&C_{2n}&\dots&C_{nn} \\ \end{array} \right].
\end{displaymath}

For n=2, $A^{-1} = \frac{1}{a_{11}a_{22}-a_{21}a_{12}}
\left[ \begin{array}{cc} a_{22}&-a_{12}\\ -a_{21}&a_{11} \end{array} \right]$.

Areas and Volumes:


Alan C Genz
2000-07-06