MATRIX OPERATIONS
Matrix Addition and Scalar Multiply:
for $m \times n$ A, B and C
Matrix Multiply:
for an $m \times n$ A, $n \times p$ B and $p\times k$ C
Commutativity:
If AB = BA, then A and B are said to commute.
NOTE: $AB \neq BA$ USUALLY!.
Powers:
Ak = Ak-1A; A0 = I, A1 = A, A2 = AA, A3 = A2A = AAA, etc.
Note: Compute $A^k{\bf x}$ using $A(A^{k-1}{\bf x})$ not $(A^k){\bf x}$.
Transpose:
(AT)ij = (A)ji; (AB)T = BTAT.
Scalar, Inner or Dot Product:
${\bf x}^T{\bf y}= x_1y_1+\cdots +x_ny_n$(sometimes denoted by ${\bf x}\cdot {\bf y}$)
Note: if ${\bf u}_i^T$ is row i or A, $(AB)_{ij} = {\bf u}_i^T{\bf b}_j$.
Outer Product:
${\bf x}{\bf y}^T$ - an ($n\times 1$) ${\bf x}$ times a ($1\times n$) ${\bf y}$ is an $n\times n$ matrix,

MATRIX INVERSES
Inverse of A:
For an $n\times n$ A
Finding A-1:



Alan C Genz
2000-06-22