VECTORS in Rn and VECTOR EQUATIONS
n = 2:
${\bf u}= \left[ \begin{array}{c}u_1 \\ u_2 \end{array} \right ] \in R^2$, a 2-vector. Addition ${\bf u}\ +{\bf v}= \left[\begin{array}{c}u_1+v_1\\ u_2+v_2\end{array}\right ]$,
scalar multiplication $c{\bf u}= \left[ \begin{array}{c}cu_1\\ cu_2\end{array} \right ]$, zero vector ${\bf0}= \left[ \begin{array}{c}0\\ 0\end{array} \right ]$.
Geometry and parallelogram rule
n = 3:
${\bf u}= \left[ \begin{array}{c}u_1\\ u_2\\ u_3\end{array} \right ] \in R^3$, a 3-vector. Addition ${\bf u}\ +{\bf v}=\left[\begin{array}{c}u_1+v_1\\ u_2+v_2\\ u_3+v_3\end{array}\right]$,
scalar multiplication $c{\bf u}= \left[ \begin{array}{c}cu_1\\ cu_2\\ cu_3 \end{array} \right ]$, zero vector ${\bf0}= \left[ \begin{array}{c}0\\ 0\\ 0\end{array} \right ]$.
General n:
${\bf u}= \left[ \begin{array}{c}u_1\\ \vdots\\ u_n\end{array} \right ] \in R^n$, an n-vector. Addition ${\bf u}\ +{\bf v}=\left[\begin{array}{c}u_1+v_1\\ \vdots\\ u_n+v_n\end{array}\right]$,
scalar multiplication $c{\bf u}= \left[\begin{array}{c}cu_1\\ \vdots \\ cu_n \end{array} \right]$, zero vector ${\bf0}= \left[ \begin{array}{c}0\\ \vdots \\ 0\end{array} \right]$.
Algebraic properties: for all ${\bf u}, {\bf v}, {\bf w}\in R^n$, and scalars c, d
1.
u + v = v + u
2.
( u + v ) + w = u + ( v + w )
3.
u + 0 = u
4.
u + (-u) = u - u= 0
5.
c(u + v) = cu + cv
6.
(c+d)u = cu + du
7.
c(du) = (cd)u
8.
1u = u
Linear combinations:

The MATRIX EQUATION $A{\bf x}= {\bf b}$
Matrix-Vector Multiplication:
If A is an $m \times n$ matrix and ${\bf x}\in R^n$,

\begin{displaymath}A{\bf x}= [ {\bf a}_1\ {\bf a}_2\ \ldots\ {\bf a}_n ]
\left[...
...ight ] =
x_1{\bf a}_1 + x_2{\bf a}_2 + \cdots + x_n{\bf a}_n
\end{displaymath}

Linear Systems:
These representations all have the same solution set:

Existence of solutions:
$A{\bf x}= {\bf b}$ has a solution iff ${\bf b}$ is a linear combination of ${\bf a}_1, {\bf a}_2, ..., {\bf a}_n$.
Computation of $A{\bf x}$:
Identity Matrix:



Alan C Genz
2000-07-06