SYSTEMS of LINEAR EQUATIONS

Background: Applications

Systems of Linear Equations

\begin{displaymath}\begin{array}{c}
a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n =...
..._{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n = b_m \\
\end{array}\end{displaymath}

Solution Types

Matrix Notation

\begin{displaymath}\stackrel
{\left[
\begin{array}{cccc}
a_{11} & a_{12} & \ldo...
... & b_m \\
\end{array}\right]}
{\mbox{{\bf augmented matrix}}}
\end{displaymath}

Solution Method:
Use elementary row operations to simplify.

\begin{displaymath}\left.
\begin{array}{l}
\mbox{Replacement}\\ \mbox{Interchan...
...w \mbox{\bf Triangular system}\Rightarrow \mbox{\bf Solution}.
\end{displaymath}

Examples

ROW REDUCTION and ECHELON FORMS
Echelon Forms:
$\bullet =$ nonzero entry, * = any number

\begin{displaymath}\rule{0pt}{5pt}\hspace{-1cm}
A {{ \atop \sim} \atop {\mbox{{\...
...\\
0 & 0 & 0 & 0 & 0 & \ldots & 0 & 1 & *
\end{array}\right]}
\end{displaymath}

Examples
Uniqueness:

\begin{displaymath}\rule{0pt}{5pt}\hspace{-2cm}
A {{ \atop \sim} \atop {\mbox{{\...
... \atop {\mbox{{\small row ops}}} } \mbox{\ unique reduced\ } U
\end{displaymath}

Pivots:
Row Reduction Algorithm:
1.
Start with left-most nonzero column
2.
Interchange rows to find nonzero pivot
3.
Use row replacement ops to create zeros below pivot
4.
Repeat steps 1, 2, 3 on submatrix below current pivot row
Solution of Linear Systems:
Existence and Uniqueness:
Consistent systems



Alan C Genz
2000-07-06