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ABSTRACT
Motivation: There is a need for an efficient and accurate
computational method to identify the effects of single and multiple
residue mutations on the stability and reactivity of proteins. Such
a method should ideally be consistent and yet applicable in a
widespread manner, i.e., it should be applied to various proteins
under the same parameter settings, and have good predictive power
for all of them.
Results: We develop a Delaunay tessellation-based four-body
scoring function to predict the effects of single and multiple residue
mutations on the stability and reactivity of proteins. We test our
scoring function on sets of single point mutations used by several
previous studies. We also assemble a new, diverse set of 237
single and multiple residue mutations, from over twenty four different
publications. The four-body scoring function correctly predicted the
changes to the stability of 169 out of 210 mutants (80.5%), and
the changes to the reactivity of 17 out of 27 mutants (63%). For
the mutants that had the changes in stability/reactivity quantified
(using reaction rates, temperatures etc.), an average Spearman rank
correlation coefficient of 0.67 was achieved with the four-body scores.
We also develop an efficient method for screening huge numbers of
mutants of a protein, called combinatorial mutagenesis. In one study,
64 million mutants of a cold-shock nucleus binding domain protein
1CSQ, with six of its residues being changed to all possible (20)
amino acids, were screened within a few hours on a PC, and all five
stabilizing mutants reported were correctly identified as stabilizing by
combinatorial mutagenesis.
Availability: All lists of mutants scored, and executables of programs
developed as part of this study are available from this web page:
http://www.wsu.edu/∼kbala/Mutate.html.
Contact: kbala@wsu.edu

1 INTRODUCTION AND PREVIOUS WORK
Mutagenesis is the process of replacing one or more amino acids
in a wild-type (WT) protein by alternate amino acids to generate
a mutant protein. The goal of the process is to create a protein
with certain desirable biochemical properties that are lacking in
the WT protein. For instance, a protein that is more reactive, or
more stable, in a particular reaction than the WT can often be
generated by altering the identity of a single key residue (to generate
a single-point mutant). Mutagenesis finds applications naturally in
protein design, drug discovery, and other similar areas (see the
Supplementary Document for a listing of many such applications).

The experimental process of creating mutants can often be
expensive and time-consuming. To start with, it is often not
straightforward to identify the key residue(s) that need to be mutated
in order to achieve the desired biochemical properties. Once the
critical residue positions are identified, it can still be non-trivial to
decide what the new amino acids should be. Hence biochemists

often end up having to create and analyze a large number of
mutants in order to identify a handful of desirable ones. In a typical
example (1CSQ, one of the proteins included in our research), six
amino acid positions were identified as desirable mutation sites.
The experimentalists wanted to try all possible alternate amino acid
combinations for these six residues, changing at least one amino
acid in each case. The total number of single- and multiple-point
mutants that they could have considered is 64 million (206−1 to be
exact)! Of course, they only tried a few hundreds of the mutants,
and reported five of them that had the desired properties. As
illustrated by this example, it is quite desirable to use computational
methods to reduce the number of mutants that need to be generated
experimentally.

One of the key steps in most protein structure prediction methods
is the screening of multiple candidate conformations to select the
best one(s), and a scoring function is used for this purpose. Scoring
functions have been used for protein fold recognition for several
years – many of them are studied in the following references
(Miyazawa and Jernigan, 1985; Sippl, 1990; Park and Levitt, 1996;
Krishnamoorthy and Tropsha, 2003). We could study the use of
any such scoring function for the purpose of virtual mutagenesis –
score the original (WT) protein, and then score the original protein
after making the proposed changes to the sequence while keeping
the structure unchanged. We could then correlate the changes in
score and the effects of the mutations on various properties of
the original protein, thus developing a predictor for the effects of
mutations. In spite of the apparent simplicity, only a few such
studies have been undertaken so far. Carter et al. (2001) obtained
high correlations between changes in the four-body scores and the
free energy changes (measured as ∆∆G values) resulting from
mutations to residues in the hydrophobic cores of five different
proteins. More recently, Masso, Lu, and Vaisman (2006) used the
same four-body scoring function to study the structure-function
correlations of the mutants of HIV-1 protease and T4 lysozyme.

On the other hand, direct computational strategies (i.e., without
any connections to fold recognition) have been used to predict
the effects of mutations on the stability of proteins. Gilis and
Rooman (1997) developed database-derived potentials based on
solvent accessibility to predict the effects of single-point mutations
on the stability of proteins. Topham et al. (1997) used tabulated
structural propensities of amino acids to predict the changes to
the stability of several T4-lysozyme structures. In addition to the
3D structures of the WT proteins, this study also used the 3D
structures of mutants. Guerois et al. (2002) developed the energy
function called FOLD-X for predicting the ∆∆G values due to
mutations. More recently, Cheng et al. (2006) developed support
vector machines-based (SVM) models that used both sequence and
structure information to predict stability changes due to single-
point mutations. The SVM-based method has the best accuracy
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reported so far – 84%. The common feature of the above methods
is that they all employ various sequence and structure interaction
terms, and the best way to combine these terms is determined (i.e.,
various parameters are tuned) using a training set of mutations.
The accuracy of these methods mainly stems from the training
procedure, and hence is quite dependent on the training set of
mutations used.

We believe that the accuracy of the underlying scoring function
(or interaction terms) is most critical for predicting the effects of
mutations. Our main goal is to develop, and test, an accurate
underlying scoring function to predict the changes to the stability
and reactivity of proteins due to mutations from scratch, i.e.,
without having to learn from any mutations. The scoring function
we use is developed from the four-body scoring function that is
based on the Delaunay tessellation of proteins. The latest (and
most accurate) version of the four-body scoring function as used
for protein decoy discrimination was proposed by the author
previously (Krishnamoorthy and Tropsha, 2003), and has been
tested extensively on many test sets of decoys. Though two previous
studies (Carter et al., 2001; Masso et al., 2006) used the four-
body scoring function to analyze mutagenesis, they both tested the
scoring function only on limited sets of proteins. The first study
considered mutations that are made only in the hydrophobic core of
five proteins. The second study considers most possible mutations
for two different proteins. Further, they both use an older version
of the scoring function, and the second study uses different settings
for scoring the mutants of the two proteins considered. We address
these and other shortcomings when defining our four-body scoring
function.

We first test our scoring function on 1558 mutants (all single-
point mutations except three) considered by the previous studies for
stability changes. The overall accuracy was 65.2% (see Section 3
for details). We also assemble a new, comprehensive list of proteins
and their mutants (both single and multiple point), along with
experimental data that quantifies the change in stability or reactivity
of the WT protein. This test set of 237 mutants is collected from
twenty four different experimental studies. We correctly predict
the effects of the mutations on the stability of 169 out of 210
mutants (80.5%), and those on the reactivity of 17 out of 27 (63%)
mutants. For the sets of mutants that had the effects on stability
or reactivity quantified (reaction rates, free energy changes etc.),
we obtain an average Spearman rank correlation coefficient of 0.67
between the quantifying data and the four-body scores. We also
propose an efficient method to evaluate huge numbers of mutants by
working with only the Delaunay tetrahedra that the mutated residues
participate in (as opposed to scoring the WT protein repeatedly).

2 METHODS AND MATERIALS
We describe the details of the four-body scoring function used for
mutagenesis, and the test set of single- and multiple-residue mutants
that we assembled, and then introduce combinatorial mutagenesis.

2.1 Four-body scoring function
The idea of a scoring function for protein fold recognition that is
built on the Delaunay tessellation of proteins was first proposed by
Tropsha et al. (1996). Singh, Tropsha, and co-workers subsequently
developed the scoring function (Munson and Singh, 1997; Tropsha
et al., 1998), and also explored the possibility of using the same

for ab initio protein folding (Gan et al., 2001). The formulation of
the scoring function was improved by Krishnamoorthy and Tropsha
(2003), and the applicability for decoy discrimination was tested on
various decoy sets. Further extensive testing of the scoring function
has been conducted recently by Krishnamoorthy et al. (Fowler et al.,
2007; Krishnamoorthy and Stratton, 2007). This latest formulation
defines the scoring function as the following log-likelihood ratio:

Qα
ijkl = log

"
fα

ijkl

pα
ijkl

#
. (1)

i, j, k, and l represent the residue identities of the four amino acids
(20 possibilities) in a Delaunay tetrahedron from the tessellation
of the protein. Each amino acid is represented by a single point
located at the centroid of the atoms in its side-chain (including the
Cα atom). α represents the type of the tetrahedron based on the
back-bone chain connectivity of the four participating amino acids.
There are five tetrahedron types possible, and α takes one of the
values 0, 1, 2, 3 or 4 corresponding to these types (Krishnamoorthy
and Tropsha, 2003). The total score (or simply, the score) of a
protein is then defined as the sum of the log-likelihood ratios of
all tetrahedra in its Delaunay tessellation. A cut-off value of 10
Å (Angstroms) was used for the length of any edge of the tetrahedra
that are scored, thus discarding biochemically irrelevant tetrahedra
with huge edge lengths. Simply put, the score of a protein gives
a measure of how well-packed its residues are (hence it was also
called the Simplicial Neighborhood Analysis of Protein Packing, or
SNAPP, score). Further, the correct way to interpret the score is in
a relative sense, i.e., we can compare the scores of two otherwise
similar conformations to quantify how one of them is packed better
than the other.

The back-bone chain connectivity of the tetrahedra is not
considered by Carter et al. (2001) or in the more recent study by
Masso et al. (2006). Further, in both these studies, there is some
ambiguity regarding the choice of side-chain centers of residues
versus back-bone Cα atom coordinates that should be used to
represent each amino acid. It is not desirable to change the settings
and other parameters of the scoring function when scoring different
proteins. In fact, Masso et al. use two different settings for the two
proteins that they study. Their justification is the robustness of the
four-body score under small perturbations of the points representing
each amino acid. The authors claim that the total score of a protein
does not change by much when the representation of the amino acids
is changed from Cα to side-chain centers.

The question of robustness of the Delaunay tessellation
of proteins (and point sets in general) was addressed by
Bandyopadhyay and Snoeyink (2004) – they defined the concept
of almost Delaunay simplices, where the positions of the points
defining the simplex are allowed to vary in a controlled range (as
opposed to being fixed). The four-body scoring function was tested
under the almost-Delaunay setting to obtain decoy discrimination
results that are roughly comparable to those obtained by the original
scoring function. Still, the results obtained using the side-chain
center representation (by Krishnamoorthy and Tropsha (2003)) are
markedly better than those obtained using Cα representation, or
using almost Delaunay tetrahedra. In fact, Krishnamoorthy and
Tropsha did obtain the Cα results for the decoy sets reported in their
paper; but they were uniformly inferior to those using side-chain
centers, and hence not reported at all. They suggested that side-chain
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centers be used always in order to obtain the most accurate results.
This suggestion has been further validated by recent results obtained
by Krishnamoorthy et al. (Fowler et al., 2007; Krishnamoorthy and
Stratton, 2007).

Another aspect of the side-chain center versus Cα option is the
change in representation between the WT and the actual mutant
protein. We use the structure of the WT for the mutant as well (only
the sequence is changed). To check the validity of this assumption,
we need to compare the 3D structure of mutants (when available)
with that of the WT, as represented by the set of Delaunay tetrahedra
formed. Naturally, the tetrahedra set could see several more changes
with the side-chain center representation as compared to that of
Cα’s; especially, when small residues in the WT are replaced by
bulky ones in the mutant (e.g., a GLY replaced by TYR). Topham
et al. (1997) provide a list of PDB codes for several WT-mutant
pairs of T4 lysozyme. We calculate the edit distance between the
tetrahedra sets participated by the mutation sites in the WT and
in the mutant – how many residue number substitutions have to
be made to get from the tetrahedra set of the WT to that of the
mutant, given as a percentage of the total number of residues
(counting repetitions) in the tetrahedra in the set of the WT. Under
the side-chain center representation, the average edit distance is
35%, while under Cα representation, it is only 12%. At the same
time, the above calculation completely ignores the sequence of the
residues. Even though the Cα atoms of the WT are a lot closer to
the Cα of the actual mutant, the sequence-structure correlations
are far more accurate under the side-chain center representation
(Krishnamoorthy and Tropsha, 2003). To make sure, we scored our
set of mutants using Cα’s, only to obtain an accuracy of less than
50%. Hence, we stick with the side-chain centers.

On a related note, the claim of Masso et al. that the score of the
protein does not change much when Cα atoms are used in place of
side-chain centers might hold only for the total score of the protein,
and not for the case of change in the total score – especially when
the change is small. When only a single residue is changed, only a
small subset of the full set of Delaunay tetrahedra is affected. The
change in the total score in this case might be sensitive to the way the
residues are represented, and also to perturbations in the positions
of these residues. The residues that are in the inner portions of the
protein (buried) participate in many more tetrahedra than those that
are on the outside (surface), and hence the robustness result might
apply more for the case of the buried residues. All mutations studied
by Carter et al. (2001) are performed on hydrophobic core residues.
On the other hand, many mutations that we considered involve
changes to surface residues. Hence we suggest the consistent use
of side-chain centers when scoring mutations using the four-body
scoring function. We also use the weights for the scores of different
classes of tetrahedra as defined by Krishnamoorthy and Tropsha
(2003).

In addition, some key long-range interactions between amino
acids are missed out by the use of a 10 Å cut-off on the Delaunay
edges, especially for the case of surface residues. Hence we use an
increased cut-off of 12 Å when scoring mutations. Notice that the
contacts made by most buried residues remain unchanged, as such
contacts are well within the 10 Å range. At the same time, several
key interactions of surface residues that are left out by the 10 Å cut-
off are now included in the calculations, thus making the scoring
function more accurate.

Under the settings described above, we calculate the change in
total score between the WT and the mutant protein (mutant score -
WT score). A positive change (i.e., the mutant score is more than
the WT score) indicates that the mutant is more stable than the
WT, while a negative change indicates lower stability. Instead of
using the raw change in total score, we use the fraction (given as
percentage) of change to the sum of the scores of the tetrahedra
that see any change due to the mutations. Thus we exclude from
the calculations those tetrahedra that are present both in the WT
and the mutant. We use a cut-off value of 0.1% to determine if this
percentage change is significant (i.e., if the percentage change is
below 0.1% in absolute value, we assume there is no change).

We also correlate increased (decreased) activity with a negative
(positive) change in the total score. The intuition behind this
definition is that well-packed proteins are typically not highly active,
and hence the high total score is correlated with less activity. We
must mention, though, that as of now, we could only assemble a
limited number of mutants with activity data to test this assumption
(see Section 3).

2.2 Test sets of mutants
The ProTherm database (Kumar et al., 2006) lists a huge number of
mutations, and some of the previous studies have created mutant
data sets from there (Cheng et al., 2006). At the same time,
ProTherm typically does not list multi-point mutants, and reactivity
data is not listed in all the cases as well. Hence, we have searched
the literature to identify a comprehensive list of single- and multiple-
point mutations. Overall, there are 237 mutants taken from 24
different papers. 210 of the mutants are analyzed for changes
in stability, while the remaining 27 are analyzed for changes in
reactivity. After assembling the data set, we found that ProTherm
in fact listed 80 of them. The whole data set, along with the
performance of the four-body scoring function on the mutants, is
presented in Table 1. We describe the various types of mutations
assembled briefly in a supplementary document.

Apart from our mutant list, we also analyze the two lists of 1096
and 388 single point mutants considered by Cheng et al. (2006), the
50 single point mutants that were considered outliers in the study
by Guerois et al. (2002), and 24 T4 lysozyme mutants (3 being
multiple-point) considered by Topham et al. (1997).

2.3 Combinatorial Mutagenesis
After the potential mutation sites in the WT are identified, it is often
not straightforward to decide the new residues to be put in these
sites. Experimentalists might want to try several amino acids for
each mutation site, and hence are faced with the task of generating
a large number of mutants. For example, if three potential mutation
sites have been identified, and we want to try the residues Ala, Val,
Ile for the first site, Val and Leu for the second site, and Cys, His,
Lys, and Arg for the third site. The total number of mutants we have
to analyze is 3 × 2 × 4 = 24. In one of the studies that we used to
create our list of mutants, Martin et al. (2001) identified six amino
acid sites of the protein 1CSQ to be mutated to all other amino
acids. The result is a staggering 64,000,000 proteins to be analyzed
(including the WT). Our scoring function is most valuable for such
mutagenesis experiments – we could identify (computationally) a
relatively small set of mutants that are potentially the most suitable
ones, and experimentally generate them before considering others.
Since we consider all possible combinations of mutations at the
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Table 1. Test set of mutations studied. Each mutation (if given) is indicated by the residue number and the new amino acid to which it is mutated. If there
are multiple changes defining a single mutant, these are separated by “/”, and all the mutations enclosed inside braces. Pred gives the number of correctly
predicted mutants, out of the total number given by TOT. The complete list of mutants and the corresponding four-body scores are provided in a supplementary
document. They are also available from the author’s web page: http://www.wsu.edu/∼kbala/Mutate.html.

# Article Study Mutants scored Pred TOT

1 Bonander et al. (2000) Disulfide bond-deficient azurin mutant (3A/26I), (3A/26A), (3A/25R/26A/27R) 3 3

2 Martin et al. (2001) In-vitro selection of highly stabilized G-1 (66L/67P), G-2 (2I/3S/46Q/64L/66L/67P), G-3 (46L/66L/67H), 5 5

mutants with optimized Surface G-4 (2Y/3R/46L), G-5 (2Y/3I/46Q/64L/66L/67P)

3 de Antonio et al. (2000) Contribution of tryptophan to the 4F, 51F, (4F/51F) 0 3

properties of ribotoxin α-sarcin

4 Chen and Gouaux (1997) Reduction of hydrophobicity in bacteriorhodopsin Q1 (113Q), Q2 (113Q/116Q), Q3 (113Q/116Q/120Q), 5 5

Q4 (113Q/116Q/120Q/124Q), Q4D (113Q/116Q/117D/120Q/124Q)

5 Huang et al. (1996) Mutagenesis of protein phosphatase 1 96A, 124D, 248N, 221S, 395A, 208A 2 6

for catalysis and inhibitor binding

6 Ge et al. (2003) Antifungal activity of a rice lipid transfer protein 45A, 46A, 72L 2 3

7 Suresh et al. (2006) C-reactive protein mutants and pneumococcal 175A, 114A 2 2

infection in mice

8 Oppermann et al. (1997) Mutagenesis of hydroxysteroid dehydrogenase 12A, 87A, 138A 2 3

9 Pathange et al. (2006) Correlation between protein binding strength 29 single-point mutants from 82-93H, 136-155H 26 29

10 Funahashi et al. (2002) Surface hydration and stability of lysozyme 2G, 2A, 2L, 2M, 2F, 2S, 2Y, 2D, 2N, 2R, 2I

74G, 74A, 74F, 74S, 74Y, 74D, 74N, 74R, 74M, 24 32

74L, 74I, 110F, 110Y, 110R, 110N, 110D, 110M,

110L, 110I, 110A, 110G (original residue in all cases is V)

11 Takano et al. (1999) N-terminal residues and conformational 1M, 1A 0 2

stability of human lysozyme

12 Hahn et al. (1995) Mutagenesis of Glucanase 101Y, 103Q, 105N, 105K, 107D, 101F, 103D 5 7

13 Sun et al. (2001) Mutations and stability of methylamine 76N, 122A, 122C, 119F, 119E, 119K 4 6

dehydrogenase

14 Dvir et al. (2003) Human acid-β-glucosidase and 370S, 394L, 463C, 496H 2 4

Gaucher disease

15 Korkegian et al. (2005) Thermostabilization of an enzyme (23L/140L/108I), (23L/140L), 23L, 140L, 10T, 67E, 69L 5 7

16 Brownlie et al. (1994) Structures of the mutants of porphobilinogen 26H, 149L, 173W, 31T, 34K, 116T,

deaminase 116W, 116Q, 177R, 223K, 250K, 252T, 12 17

93F, 201W, 247F, 256N, 167W

17 Braun et al. (1997) Alanine insertion in lactose permease 83A, 87A, 90A, 91A, 93A, 79A, 96A 5 7

transmembrane helices

18 Siadat et al. (2006) Disulfide bonds and stability of an M2 (327C/375C), M3 (354C/456C), M4 (369C/476C), 4 5

acetylcholinesterase M6 (452C/533C), M7 (464C/543C)

19 Almog et al. (2002) Stabilizing mutations in subtilisin BPN S63 (41A/50F/73L/206W/217K/218S/221C/271E), 2 2

S88 (2K/3C/5S/43N/50F/73L/206C/217K/218S/271E)

20 Erwin et al. (1990) Salt bridges and stability of subtilisin BPN 271E, 51K, 164R 3 3

21 Köditz et al. (2004) Mutagenesis of the unfolding region of 35S, 35A, 46Y, (31A/33S), (35S/46Y), 5 7

ribonuclease A (35A/46Y), (31A/33S/46Y)

22 Ormö et al. (1995) Radical stability in ribonucleotide reductase 212W, 234N 2 2

from E-coli

23 Kong et al. (1993) Evolutionally conserved aspartic acid residues in 57A, 98A, 152A 0 3

human glutathione S-transferase P1-1

24 Carter et al. (2001) Hydrophobic core mutations and stability 73 mutants (five different proteins) 66 73

individual sites, we term the process of scoring all possible mutants
using the four-body scoring function as combinatorial mutagenesis.

As seen by the example of 1CSQ, the number of combinations
could be quite huge, and for such cases, the usual way of scoring
the mutants turns out to be highly inefficient. By default, we would
score the WT protein once, and then score the same again for

each mutant, with the appropriate changes made in the amino acid
sequence. Each call to the four-body scoring function involves the
computation of the Delaunay tessellation of the protein, which
proves to be the bottleneck as far as the overall running time
of the algorithm is concerned. The most efficient algorithms for
computing Delaunay tessellations have a worst-case running time
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of O(n log n), where n is the number of points (see Edelsbrunner,
2001, Chapters 1,5). The average running times in practice also
follow the same bounds. At the same time, we notice that the
structure of the WT is not altered in any of the mutants, and
hence the residue numbers of the four amino acids forming each
tetrahedron remains unaltered, even though the identities of some
of the amino acids are changed. Hence we calculate the Delaunay
tessellation only once as part of combinatorial mutagenesis, when
scoring the WT protein. We just need to change the amino acid
identities corresponding to each mutant.

Fig. 1. 1CSQ (backbone trace shown as the thick line) along with the
Delaunay tetrahedra that the six mutation sites participate in. The six
residues considered for mutation are 2-Leu, 3-Glu, 46-Ala, 64-Thr, 66-Glu,
and 67-Ala. The spheres are at the side-chain centers of these residues, and
represent the six residues in the increasing order when viewed from the
bottom part of the figure to the top. The thin lines are the edges of the 58
tetrahedra that contain at least one of these six residues. If we consider all
67 amino acids, we get a total of 256 Delaunay tetrahedra (at 12 Å distance
cut-off). This image was created using VMD (Humphrey et al., 1996).

As a result, only those tetrahedra that involve one or more of
the mutation sites see changes to the sequence identities of the
participating amino acids. For instance, the six mutation sites of
1CSQ participate in (i.e., at least one of the six is in) 58 Delaunay
tetrahedra, which is only a fraction of the total of 256 tetrahedra
formed by the entire protein (see Figure 1). From the theoretical
point of view, there are some bounds for the number of Delaunay
triangles that each point (out of the total n points) participates in
when we consider the two-dimensional case (Edelsbrunner, 2001),
and some more conservative estimates could be derived in 3D.
From among the 4,000-odd proteins that we analyzed, the maximum
number of tetrahedra that a single amino acid participated in is 48
(43-Arg in 2BOQ), but the typical number of tetrahedra is much
smaller (average is 17.65). This number is even smaller if the amino
acid in question is on the surface of the protein. So we identify the
smaller set of tetrahedra that the mutation sites participate in (by
searching the Delaunay tessellation of the WT). For each mutant,

we calculate the difference in the sum of the log-likelihood ratios for
these tetrahedra alone in the WT and in the mutant, and we use this
difference to score and rank all the mutants. This implementation
of combinatorial mutagenesis proves to be far more efficient than
repeated calls to the default four-body scoring function for each
mutant (see Section 3.1).

3 RESULTS AND DISCUSSION
We say that the four-body scoring function predicts the effect of
a mutation correctly if an increase (correspondingly, a decrease)
in the four-body total score is observed for mutations that
are experimentally observed to be stabilizing or decreasing the
reactivity (destabilizing or increasing the reactivity) of the WT
protein. Overall on our data set, 78% (186) of the mutants were
identified correctly (see Table 1), with 169 out of 210 correct
predictions for stability (80.5%) and 17 out of 27 for activity (63%).
We are currently undertaking a detailed examination of how the
scoring function performed for each of the twenty four mutant sets,
and especially the cases of de Antonio et al. (2000), Takano et al.
(1999), and Kong et al. (1993) (articles #3, #11, and #23 in Table 1),
for which the scoring function failed on all the mutants considered
from each set. For the human lysozyme mutants studied by Takano
et al., only the N-terminal residue is mutated, which does not form
enough Delaunay tetrahedra (being on one end of the chain, and on
the surface of the protein).

As of now, we only have limited (27) number of mutants with
activity data available. We need more such mutants to test out
assumption that high total scores correspond to lower activity.
The accuracy of 63% on this set of mutants with activity data is
encouraging still.

The effects of the mutants are quantified for ten of the mutant sets,
five of them being different proteins studied by Carter et al. (2001).
Even though the authors calculated linear correlation coefficients
between four-body scores and free energy changes of these mutants,
there is no clear evidence to suggest that the four-body scores follow
a linear relationship with the experimental quantities reported.
(Masso et al. (2006) also report linear correlation coefficients,
but see Section 3.2 for discussion on their work). The Spearman
rank correlation coefficient between the four-body scores and the
experimental values seems more appropriate, with no assumptions
of linear relationships involved. We present the rank correlation
coefficients for the ten mutant sets in Table 2. The overall average
Spearman rank correlation coefficient is 0.67. The rank correlations
for the set of mutants studied by Carter et al. are markedly high
– the average for these five mutant sets is 0.77. This result is
not surprising, as all these mutations are done on sites in the
hydrophobic cores of the proteins in question. In general, the more
tetrahedra the mutation sites participate in, the more accurate the
prediction is.

The performance of our scoring function on mutant data sets
compiled by others are as follows (% correct predictions): 66% for
the 1096-set and 63% for the 388-set from Cheng et al. (2006),
60% for the 50 outliers from Guerois et al. (2002), and 79% of
the 24 mutants from Topham et al. (1997). We also scored our 210
mutants with stability data using the FOLD-X program (Guerois
et al., 2002), and 68% of these mutants were identified correctly by
this program (compare to our accuracy of 80.5%). While the web
interface for the FOLD-X program is handy when scoring a handful
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Table 2. Spearman rank correlation coefficients for mutant sets whose
change in stability/reactivity has been quantified. # Mut gives the number
of mutants, and RC gives the rank correlation coefficient. ∗: indicates that
the WT is also included in the rank calculations. †: We could use only five
of the mutants reported by Hahn et al. out of a total of seven (see Entry 12 in
Table 1), as the mutants 103Q and 105K were listed as unmeasurable. The
last five sets of mutants were all reported by Carter et al. (2001).

Study Experimental quantity # Mut RC

Martin et al. (2001) melting temperature 5 0.90

Chen and Gouaux (1997) enthalpy of activation 6∗ 1.00

Oppermann et al. (1997) reaction rates (K) 6∗ -0.37

Funahashi et al. (2002) stability z-values 32 0.67

Hahn et al. (1995) WT/mutant reactivity 5 † -0.10

barnase ∆∆Gunfold 9 0.90

chymotripsin inhibitor ∆∆Gunfold 9 0.82

staphylococcal nuclease ∆∆Gunfold 19 0.87

calbindin ∆∆Gunfold 9 0.78

T4 lysozyme ∆∆Gunfold 27 0.63

of mutations, we found it quite tedious to score all the 210 mutants
from our test set (took us several hours). We believe that researchers
should provide executable file(s) for scoring functions that could
handle large sets of mutations simultaneously.

The key point to note when comparing our scoring function to
others is that unlike the previous methods, we have not trained our
scoring function on a set of mutations. Thus, an SVM trained on our
scoring function could well have the largest accuracy yet reported –
we are currently trying to implement this idea.

3.1 Combinatorial mutagenesis: an example
Our implementation of combinatorial mutagenesis (Section 2.3)
scored all 64,000,000 mutants of 1CSQ (including the WT) within
6 hours (on a typical PC). In comparison, calling the four-
body scoring function separately for each mutant did not finish
in 24 hours. The original authors reported only five stabilizing
mutants. Combinatorial mutagenesis predicted all five of them
correctly. Furthermore, they were in the top 17.7% (of 64 million
mutants). Analysis of the top-scoring mutants shows that high
scores are assigned for mutants with Cystines in the selected sites.
As illustrated in Figure 1, the six mutation sites participate in
several tetrahedra together, i.e., they are linked to each other. The
occurrences of stabilizing disulfide bonds between cystines is scored
among the highest by the four-body scoring function, and hence
the mutants with two or more Cystines are naturally scored high
(Tropsha et al., 1996, 1998).

3.2 Comments on the work of Masso et al. (2006)
Masso, Lu, and Vaisman analyzed mutants reported in three
different papers (and some more mutants that were not reported
in these papers) using an earlier version of the four-body scoring
function. In the first of these papers, Loeb et al. (1989) studied
mutants of HIV-1 Protease. They reported a western blot assay
analysis as well as an enzyme activity analysis. Most mutations
were reported to have ambiguous ”WT-like” behavior. Furthermore,
only mutations of the wild type western blot assay classification
could be considered, as they were the only group for which the
production of the protein was explicitly proven. This is an important

factor, as the authors were mutating an operon, which leads to the
production of multiple HIV proteins. Our results of this study were
poorer than the other reported results. Out of 56 mutants, only
21 were correctly scored. This lower accuracy may be accounted
for by the unreported global destabilization of the enzyme. In
another paper considered, Wrobel et al. (1998), analyzed mutants
of HIV-1 reverse transcriptase. The analysis as well as the results
presented were similar to those presented by Loeb et al., and a subset
of appropriate mutations was selected in a similar manner. From
among the 105 selected mutants, the four-body scoring function
correctly predicted 51 mutants. Once again, the incorrect scoring
of the remaining mutants in this study could very well be due to
the global destabilization of the protein, which the authors did not
report explicitly.

4 CONCLUSIONS
The strengths of the four-body scoring function for predicting
stability and reactivity effects of mutations are widespread
applicability, consistency (one setting works for all cases),
computational efficiency (combinatorial mutagenesis), and accuracy.
The idea of combinatorial mutagenesis can in principle be used even
for a single mutation, or a few of them, but the gain in computational
efficiency might not be noticeable.

Our test set is comprehensive, but is not complete – we plan to
further explore previous as well as forthcoming literature to add new
sets of mutants to the current ones. Even though the same settings
are recommended for applying our scoring function to all proteins,
we could customize it with different settings specifically for certain
classes of proteins, thus increasing its accuracy (of course, the
scoring function will not perform as well under such customized
settings for other classes of proteins). Another idea for increasing
the accuracy of the scoring function is to use different weights for
various quadruplets (rather than simply adding them all up). We
could divide the set of mutants into training and test sets, determine
the weights by learning from the training set and then validate them
on the test set. We are currently investigating these and other ideas.
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