Column
basis reduction and decomposable knapsack problems
DOI
Given below are the CPLEX .lp files for the ten instances reported
in the paper. All instances have the coefficient vectors decompose
as a = pM + r, for M = 10000.
Orig gives the original problem in each case. RSRef
and NSRef give the rangespace and nullspace reformulations of
the original problem, respectively. BranchOnpx gives the
formulation of the original problem with the branching
direction px added as a separate variable (equivalently,
the constraint x51 = px is
added).
DKPFEAS gives the default (feasibility) version of DKP:
{ β1 ≤ ax ≤
β2, 0 ≤ x
≤ u}. DKPOPT gives the optimality version: max
{ ax | ax ≤ β2, 0
≤ x ≤ u }. Let the optimal objective
function value of this problem be βa. Eq_ba
gives the equality-constrained knapsack problem with ax =
βa, and Eq_ba_p1 gives the
equality-constrained knapsack problem with ax =
βa+1. The unbounded equality knapsacks are
{ ax = β | x ≥ 0 }. β*
is the largest value of β for which the infeasibility of the
unbounded equality knapsack is proven by branching on px,
and Frob(a) gives the Frobenius number of a
(which is the largest number that cannot be expressed as a non-negative
integer linear combination of the numbers aj).
The parameter settings used for normal CPLEX runs
is here, while that for very
basic CPLEX is here.
DKPs with u=e
- DKPFEAS: Orig
RSRef
BranchOnpx
DKPOPT: Orig
RSRef
Eq_ba: Orig
RSRef
NSRef
Eq_ba_p1: Orig
RSRef
NSRef
- DKPFEAS: Orig
RSRef
BranchOnpx
DKPOPT: Orig
RSRef
Eq_ba: Orig
RSRef
NSRef
Eq_ba_p1: Orig
RSRef
NSRef
- DKPFEAS: Orig
RSRef
BranchOnpx
DKPOPT: Orig
RSRef
Eq_ba: Orig
RSRef
NSRef
Eq_ba_p1: Orig
RSRef
NSRef
- DKPFEAS: Orig
RSRef
BranchOnpx
DKPOPT: Orig
RSRef
Eq_ba: Orig
RSRef
NSRef
Eq_ba_p1: Orig
RSRef
NSRef
- DKPFEAS: Orig
RSRef
BranchOnpx
DKPOPT: Orig
RSRef
Eq_ba: Orig
RSRef
NSRef
Eq_ba_p1: Orig
RSRef
NSRef
- DKPFEAS: Orig
RSRef
BranchOnpx
DKPOPT: Orig
RSRef
Eq_ba: Orig
RSRef
NSRef
Eq_ba_p1: Orig
RSRef
NSRef
- DKPFEAS: Orig
RSRef
BranchOnpx
DKPOPT: Orig
RSRef
Eq_ba: Orig
RSRef
NSRef
Eq_ba_p1: Orig
RSRef
NSRef
- DKPFEAS: Orig
RSRef
BranchOnpx
DKPOPT: Orig
RSRef
Eq_ba: Orig
RSRef
NSRef
Eq_ba_p1: Orig
RSRef
NSRef
- DKPFEAS: Orig
RSRef
BranchOnpx
DKPOPT: Orig
RSRef
Eq_ba: Orig
RSRef
NSRef
Eq_ba_p1: Orig
RSRef
NSRef
- DKPFEAS: Orig
RSRef
BranchOnpx
DKPOPT: Orig
RSRef
Eq_ba: Orig
RSRef
NSRef
Eq_ba_p1: Orig
RSRef
NSRef
DKPs with u=10e
- DKPFEAS: Orig
RSRef
BranchOnpx
DKPOPT: Orig
RSRef
Eq_ba: Orig
RSRef
NSRef
Eq_ba_p1: Orig
RSRef
NSRef
- DKPFEAS: Orig
RSRef
BranchOnpx
DKPOPT: Orig
RSRef
Eq_ba: Orig
RSRef
NSRef
Eq_ba_p1: Orig
RSRef
NSRef
- DKPFEAS: Orig
RSRef
BranchOnpx
DKPOPT: Orig
RSRef
Eq_ba: Orig
RSRef
NSRef
Eq_ba_p1: Orig
RSRef
NSRef
- DKPFEAS: Orig
RSRef
BranchOnpx
DKPOPT: Orig
RSRef
Eq_ba: Orig
RSRef
NSRef
Eq_ba_p1: Orig
RSRef
NSRef
- DKPFEAS: Orig
RSRef
BranchOnpx
DKPOPT: Orig
RSRef
Eq_ba: Orig
RSRef
NSRef
Eq_ba_p1: Orig
RSRef
NSRef
- DKPFEAS: Orig
RSRef
BranchOnpx
DKPOPT: Orig
RSRef
Eq_ba: Orig
RSRef
NSRef
Eq_ba_p1: Orig
RSRef
NSRef
- DKPFEAS: Orig
RSRef
BranchOnpx
DKPOPT: Orig
RSRef
Eq_ba: Orig
RSRef
NSRef
Eq_ba_p1: Orig
RSRef
NSRef
- DKPFEAS: Orig
RSRef
BranchOnpx
DKPOPT: Orig
RSRef
Eq_ba: Orig
RSRef
NSRef
Eq_ba_p1: Orig
RSRef
NSRef
- DKPFEAS: Orig
RSRef
BranchOnpx
DKPOPT: Orig
RSRef
Eq_ba: Orig
RSRef
NSRef
Eq_ba_p1: Orig
RSRef
NSRef
- DKPFEAS: Orig
RSRef
BranchOnpx
DKPOPT: Orig
RSRef
Eq_ba: Orig
RSRef
NSRef
Eq_ba_p1: Orig
RSRef
NSRef
Unbounded equality knapsacks
- β=β*: Orig
RSRef
NSRef
BranchOnpx;
β=Frob(a): Orig
RSRef
NSRef
BranchOnpx
- β=β*: Orig
RSRef
NSRef
BranchOnpx;
β=Frob(a): Orig
RSRef
NSRef
BranchOnpx
- β=β*: Orig
RSRef
NSRef
BranchOnpx;
β=Frob(a): Orig
RSRef
NSRef
BranchOnpx
- β=β*: Orig
RSRef
NSRef
BranchOnpx;
β=Frob(a): Orig
RSRef
NSRef
BranchOnpx
- β=β*: Orig
RSRef
NSRef
BranchOnpx;
β=Frob(a): Orig
RSRef
NSRef
BranchOnpx
- β=β*: Orig
RSRef
NSRef
BranchOnpx;
β=Frob(a): Orig
RSRef
NSRef
BranchOnpx
- β=β*: Orig
RSRef
NSRef
BranchOnpx;
β=Frob(a): Orig
RSRef
NSRef
BranchOnpx
- β=β*: Orig
RSRef
NSRef
BranchOnpx;
β=Frob(a): Orig
RSRef
NSRef
BranchOnpx
- β=β*: Orig
RSRef
NSRef
BranchOnpx;
β=Frob(a): Orig
RSRef
NSRef
BranchOnpx
- β=β*: Orig
RSRef
NSRef
BranchOnpx;
β=Frob(a): Orig
RSRef
NSRef
BranchOnpx
You can also download ALL the lp files listed here as a single
tar-bzip2-ed file here.
Bala
Krishnamoorthy
Last modified: Sun Dec 07 02:38:11 PST 2008