Watkins, Refereed Publications
- E. Schmidt, P. Lancaster and D. S. Watkins, Bases of splines associated with constant coefficient
differential operators, SIAM J.
Numer. Analysis, 12 (1975), pp. 630-645.
- David S. Watkins,
On the construction of conforming rectangular plate elements,
Int. J. Num. Meth. Engng., 10 (1976), pp. 925-933.
- P. Lancaster and D. S. Watkins,
Some families of finite elements,
J. Inst. Maths. Applics., 19 (1977), pp. 385-397.
- David S. Watkins, Error bounds for polynomial blending function methods, SIAM
J. Numer. Analysis, 14 (1977), pp. 721-734.
- David S. Watkins, A generalization of the Bramble-Hilbert lemma and
applications to multivariate interpolation, J. Approx. Theory, 26
(1979), pp. 219-231.
- R. W. Schunk and D. S. Watkins,
Comparison of solutions to the thirteen-moment and standard
transport equations for low-speed thermal proton flows,
Planet. Space Sci., 27 (1979), pp. 433-444.
- David S. Watkins,
Determining initial values for stiff systems of ordinary
differential equations, SIAM J. Numer. Analysis, 18 (1981), pp. 13-20.
- David S. Watkins,
Efficient initialization of stiff systems with one unknown
initial condition, SIAM J. Numer. Anal., 18 (1981), pp. 794-800.
- R. W. Schunk and D. S. Watkins,
Electron temperature anisotropy in the polar wind,
J. Geophys. Res., 86 (1981), pp. 91-102.
- R. W. Schunk and D. S. Watkins, Proton temperature anisotropy in the polar wind, J. Geophys. Res., 87 (1982), pp. 171-180.
- David S. Watkins, Understanding the QR algorithm, SIAM Review, 24 (1982),
pp. 427-440.
- David S. Watkins,
An initialization program for separably stiff systems, SIAM
J. Sci. Stat. Comput., 4 (1983), pp. 188-196.
- D. S. Watkins and R. W. HansonSmith, The numerical solution of separably stiff systems by precise
partitioning, ACM Trans. Math. Software, 9 (1983), pp. 293-301.
- David S. Watkins,
Isospectral flows, SIAM Review, 26 (1984), pp. 379-391.
- D. S. Watkins and L. Elsner,
Self-similar flows, Linear Algebra Appl., 110
(1988), pp. 213-242.
- D. S. Watkins and L. Elsner,
Self-equivalent flows associated with the singular value
decomposition, SIAM J. Matrix Anal. Appl., 10 (1989),
pp. 244-258.
- D. S. Watkins and L. Elsner,
Self-equivalent flows associated with the generalized
eigenvalue problem, Linear Algebra Appl., 118 (1989),
pp. 107-127.
- A. Bunse-Gerstner, V. Mehrmann, and D. S. Watkins,
An SR algorithm for Hamiltonian matrices based on Gaussian
elimination, Meth. Operations
Res., 58 (1989), pp. 339-358.
- D. S. Watkins and L. Elsner,
On Rutishauser's approach to selfsimilar flows,
SIAM J. Matrix Anal. Appl., 11 (1990), pp. 301-311.
- D. S. Watkins and L. Elsner,
Convergence of algorithms of decomposition type for the
eigenvalue problem ( .ps ),
Linear Algebra Appl., 143
(1991), pp. 19-47.
- D. S. Watkins and L. Elsner,
Chasing algorithms for the eigenvalue problem,
SIAM J. Matrix Anal. Appl., 12 (1991), pp. 374-384.
- P. Deift, S. Rivera, C. Tomei, and D. S. Watkins,
A monotonicity property for Toda-type flows,
SIAM J. Matrix Anal. Appl., 12 (1991), pp. 463-468.
- David S. Watkins,
Bi-directional chasing algorithms for the eigenvalue problem,
SIAM J. Matrix Anal. Appl., 14 (1993), pp. 166-179.
- J. B. Haag and D. S. Watkins,
QR-like algorithms for the nonsymmetric eigenvalue problem,
ACM Trans. Math. Software, 19 (1993), pp. 407-418.
- David S. Watkins,
Some perspectives on the eigenvalue problem,
SIAM Review, 35 (1993), pp. 430-471.
- D. S. Watkins and L. Elsner,
Theory of decomposition and bulge-chasing algorithms for
the generalized eigenvalue problem, SIAM J. Matrix
Anal. Appl., 15 (1994), pp. 943-967.
- A. C. Raines III and D. S. Watkins,
A class of Hamiltonian-Symplectic methods for solving the
algebraic Riccati equation,
Linear Algebra Appl., 205/206 (1994), pp. 1045-1060.
- David S. Watkins,
Shifting strategies for the parallel QR algorithm,
SIAM J. Sci. Comput., 15 (1994), pp. 953-958.
- David S. Watkins,
Forward stability and transmission of shifts in the QR
algorithm, SIAM J. Matrix Anal. Appl., 16 (1995), pp. 469-487.
- David S. Watkins,
The transmission of shifts and shift blurring in the QR
algorithm ( .ps ),
Linear Algebra Appl., 241-243 (1996), pp. 877-896.
- David S. Watkins,
QR-like algorithms--an overview of convergence theory and
practice ( .ps ),
pp. 879-893 in Lectures in
Applied Mathematics, v. 32, The Mathematics of Numerical
Analysis, Ed. J. Renegar, M. Shub, and S. Smale, American
Mathematical Society, 1996.
- David S. Watkins,
Unitary orthogonalization processes ( .ps ),
J. Comp. Appl. Math., 86 (1997), pp. 335-345.
- P. Benner, H. Fassbender, and D. S. Watkins,
Two connections between the SR and HR eigenvalue
algorithms ( .ps ),
Linear Algebra Appl., 272 (1998),
pp. 17-32.
- David S. Watkins,
Bulge exchanges in algorithms of QR type ( .ps ),
SIAM J. Matrix Anal. Appl., 19 (1998), pp. 1074-1096.
- P. Benner, H. Fassbender, and D. S. Watkins,
SR and SZ algorithms for the symplectic (butterfly)
eigenproblem ( .ps ),
Linear Algebra Appl., 287 (1999),
pp. 41-76.
- G. A. Geist, G. W. Howell, and D. S. Watkins,
The BR eigenvalue algorithm
( .ps ),
SIAM J. Matrix Anal. Appl., 20 (1999), pp. 1083-1098.
- David S. Watkins,
QR-like algorithms for eigenvalue problems
(.ps), J. Comp. Appl. Math.,
123 (2000), pp. 67-83.
- David S. Watkins,
Performance of the QZ algorithm in the presence of
infinite eigenvalues,
SIAM J. Matrix Anal. Appl.,
22 (2000), pp. 364-375.
epubs.siam.org
- P. Benner, R. Byers, H. Fassbender, V. Mehrmann, and
D. S. Watkins,
Cholesky-like factorizations of skew-symmetric matrices,
Electron. Trans. Numer. Anal., 11 (2000), pp. 85-93.
ETNA website
- V. Mehrmann and D. S. Watkins,
Structure-preserving methods for computing eigenpairs of
large sparse skew-Hamiltonian/Hamiltonian pencils,
(.ps),
SIAM J. Sci. Comput., 22 (2001), pp. 1905-1925.
epubs.siam.org
- V. Mehrmann and D. S. Watkins,
Polynomial eigenvalue problems with Hamiltonian structure,
Electron. Trans. Numer. Anal., 13 (2002), pp. 106-118.
ETNA website
- Thomas Apel, Volker Mehrmann, and David S. Watkins,
Structured eigenvalue methods for the computation of corner
singularities in 3D anisotropic elastic structures
(.ps),
Comput. Methods Appl. Mech. Engrg, 191 (2002) pp. 4459-4473.
Also available as Preprint
SFB393/01-25,
Technische Universitaet Chemnitz, October 2001.
- G. Henry, D. S. Watkins, and J. J. Dongarra,
A parallel implementation of the nonsymmetric QR algorithm
for distributed memory architectures,
SIAM J. Sci. Comput., 24 (2003) pp. 284-311.
epubs.siam.org , also
LAPACK Working
Note 121 and
CRPC-TR97716 .
- David S. Watkins,
On Hamiltonian and symplectic Lanczos processes
(.ps), Linear Algebra Appl., 385 (2004)
pp. 23-45.
- Mark Schumaker and David S. Watkins,
A framework model based on the Smoluchowski equation in two
reaction coordinates,
J. Chemical Physics, 121 (2004), pp. 6134-6144.
- Thomas Apel, Volker Mehrmann, and David S. Watkins,
Numerical solution of large-scale structured
polynomial or rational eigenvalue problems
(.ps), in
Foundations of Computational Mathematics, Minneapolis 2002,
London Mathematical Society, Lecture Note Series 312.
Ed. Felipe Cucker, Ron DeVore, Peter Olver, Endre Suli,
Cambridge University Press, (2004) pp. 137-157.
- David S. Watkins, Product eigenvalue problems
(.pdf),
SIAM Review, 47 (2005), pp. 3-40.
epubs.siam.org
- David S. Watkins, A case where balancing is harmful
(.pdf),
Electron. Trans. Numer. Anal., 23 (2006), pp. 1-4.
ETNA website
- Mark G. Kuzyk and David S. Watkins,
The effects of geometry on the hyperpolarizability,
J. Chemical Physics, 124
(2006), 244104(1-9).
(arXiv:physics/0601172),
- David S. Watkins,
On the reduction of a Hamiltonian matrix to Hamiltonian Schur
form
(.pdf),
Electron. Trans. Numer. Anal., 23 (2006), pp. 141-157.
ETNA website
- Roden J. A. David and David S. Watkins,
Efficient implementation of the multi-shift QR algorithm
for the unitary eigenvalue problem
(.pdf),
SIAM J. Matrix Anal. Appl., 28 (2006), pp. 623-633.
- Juefei Zhou, Mark G. Kuzyk and David S. Watkins,
Pushing the hyperpolarizability to the limit,
Optics Letters, 31 (2006), pp. 2891-2893.
- Juefei Zhou, Mark G. Kuzyk, and David S. Watkins,
Reply to "Comment on pushing the hyperpolarizability to the limit",
Optics Letters, 32 (2007), pp. 944-945.
- Juefei Zhou, Urszula B. Szafruga, David S. Watkins, and
Mark G. Kuzyk,
Studies on optimizing potential energy functions for
maximal intrinsic hyperpolarizability,
Physical Reviews A, 76 (2007), 053831 pp. 1-10.
- David S. Watkins, The QR algorithm revisited
(.pdf),
SIAM Review, 50 (2008), pp. 133-145.
- Roden J. A. David and David S. Watkins,
An inexact Krylov-Schur algorithm
for the unitary eigenvalue problem
(.pdf),
Linear Algebra Appl., 429 (2008), pp. 1213-1228.
- Daniel Kressner, Christian Schroeder, and David S. Watkins,
Implicit QR algorithms for palindromic and even eigenvalue
problems,
TU Berlin,
Matheon preprint #432, Numer. Algorithms, 51 (2009), pp. 209-238.
electronic publication
- Volker Mehrmann, Christian Schroeder, and David S. Watkins,
A new block method for computing the Hamiltonian Schur form,
(.pdf)
Linear Algebra Appl., 431 (2009), pp 350-368.
link to matrices used as examples in this paper
- David S. Watkins and Mark G. Kuzyk,
Optimizing the hyperpolarizability tensor using external
electromagnetic fields and nuclear placement
J. Chem Phys., 131 (2009), 064110 (8 pages).
- Urszula B. Szafruga, Mark G. Kuzyk, and David S. Watkins,
Maximizing the hyperpolarizability of one-dimensional systems,
(.pdf)
J. Nonlinear Opt. Phys. Mater., 19 (2010), pp. 379-388.
- David S. Watkins,
Francis's algorithm,
(.pdf)
Amer. Math. Monthly, 118 (2011), pp. 387-403.
- David S. Watkins and Mark G. Kuzyk,
The effect of electron interactions on the universal properties of systems with
optimized off-resonant intrinsic hyperpolarizability,
(arXiv:1101.3043 ),
J. Chem. Phys., 134, 094109 (2011); doi:10.1063/1.3560031 (10 pages).
- A. Salam and D. S. Watkins,
Structured QR algorithms for Hamiltonian symmetric matrices,
Electron. J. Linear Algebra, 22 (2011), pp. 573-585.
- David S. Watkins and Mark G. Kuzyk,
Universal properties of the optimized off-resonant intrinsic
second hyperpolarizability,
J. Opt. Soc. Am. B, 29 (2012), pp. 1661-1671.
- Raf Vandebril and David S. Watkins,
A generalization of the multishift QR algorithm,
SIAM J. Matrix Anal. Appl., 33 (2012), pp. 759-779.
- Raf Vandebril and David S. Watkins,
An extension of the QZ algorithm beyond the Hessenberg-triangular pencil,
(.pdf)
Electron. Trans. Numer. Anal., 40 (2013), pp. 17-35.
- Jared L. Aurentz, Raf Vandebril, and David S. Watkins,
Fast computation of the zeros of a polynomial via factorization
of the companion matrix,
(.pdf)
SIAM J. Sci. Comput., 35 (2013), pp. A255-A269.
- Jared L. Aurentz, Raf Vandebril, and David S. Watkins,
Fast computation of eigenvalues of companion, comrade, and related matrices,
(.pdf)
BIT Numer. Math., 54 (2014), pp. 7-30.
- David S. Watkins,
Large-scale structured eigenvalue problems,
Chapter 2 in Numerical Algebra, Matrix Theory, Differential-Algebraic
Equations, and Control Theory. A Festschrift in honor of Volker Mehrmann,
Springer-Verlag, 2015.
- Jared L. Aurentz, Thomas Mach, Raf Vandebril, and David S. Watkins,
Fast and stable unitary QR algorithm,
(.pdf)
Electron. Trans. Numer. Anal., 44 (2015), pp. 327-341.
- Jared L. Aurentz, Thomas Mach, Raf Vandebril, and David S. Watkins,
Fast and backward stable computation of roots of polynomials,
SIAM J. Matrix Anal. Appl., 36 (2015), pp. 942-973.
(.pdf)
2017 SIAM Outstanding Paper Prize
- Jared L. Aurentz, Thomas Mach, Raf Vandebril, and David S. Watkins,
A note on companion pencils,
Contemp. Math., 658 (2016), pp. 91-101.
(.pdf)
- Jared L. Aurentz, Thomas Mach, Raf Vandebril, and David S. Watkins,
Computing the eigenvalues of symmetric tridiagonal matrices via a
Cayley transform,
Electron. Trans. Numer. Anal., 46 (2017), pp. 447-459.
- Jared L. Aurentz, Thomas Mach, Leonardo Robol,
Raf Vandebril, and David S. Watkins,
Fast and backward stable computation of roots of polynomials, part II:
backward error analysis; companion matrix and companion pencil,
SIAM J. Matrix Anal. Appl., 39 (2018), pp. 1245-1269.
(.pdf)
- Jared L. Aurentz, Thomas Mach, Leonardo Robol,
Raf Vandebril, and David S. Watkins,
Fast and backward stable computation of the eigenvalues and eigenvectors of
matrix polynomials,
Math. Comp., 88 (2019), pp. 313-347.
(.pdf)
- Daan Camps, Thomas Mach, Raf Vandebril, and David S. Watkins,
On pole-swapping algorithms for the eigenvalue problem,
arXiv:1906.08672v3, Electron. Trans. Numer. Anal., to appear.
- Thomas Mach, Raf Vandebril, and David S. Watkins,
Pole-swapping algorithms for alternating and palindromic eigenvalue problems,
arXiv:1906.09942v2, Vietnam J. Math. (2020). https://doi.org/10.1007.
Return to Homepage of David Watkins