David S. Watkins
Department of Mathematics
Washington State University
Title: Core-Chasing Algorithms for Eigenvalue Computation
Abstract: At the dawn of the
electronic computing era nobody knew how to compute the eigenvalues of
a general matrix in an efficient and stable way. This was one of the
major problems for the infant field of numerical linear algebra.
In 1959 young John Francis came up with an ingenious method that has
turned out to be the winning algorithm so far. The
method has seen modifications over the years, but it is still Francis's
algorithm. No radically different competing method has come close
to displacing it. One might think that after more than fifty years
there would be nothing more to say about Francis's algorithm, but that
turns out not to be the
case. In this talk we will discuss a new way of implementing Francis's
algorithm that has some advantages. In particular, it leads to the
first fast and (proven) backward-stable algorithm for computing the
eigenvalues of a companion matrix.