## Alexander Panchenko## Professor## Neill Hall Room 329## Phone: (509) 335-3127## Email: panchenko@wsu.edu |

##### Current Research Interests

**Data Science.** Feature extraction from networks. Learning network dynamics from limited time-series. Statistical inference on networks. Application areas: plant biology, neuroscience.

**Dynamics of active particle systems and active materials.** Mathematics of robotic swarms.
Analysis and simulation of self-organizing particle systems possessing some means of self-propulsion and decision-making capability.

**Continuum theories of large particle systems.** The main question is how to produce a continuum description of a large system of atoms or molecules (think of a fluid) starting from the atomistic equations of motion for the particles. This is the Sixth Hilbert Problem, still largely unsolved.

Students interested in either analysis or computing are welcome. If desired, a MS degree in Statistics can be obtained in parallel with the Ph.D in Math. Career opportunities with National Labs, Academia, and Industry are likely.

##### Publications

- A method for tomographic diagnostics of a jet exhaust.
*Vestnik of Kharkov Polytechnic University*, 7 (1992), no. 260, 73--86. (Russian). - Inverse source problem of radiation transfer: a special case of the
attenuated Radon transform.
*Inverse Problems*, 9 (1993), 321--338. - Generalized projection and section theorems in diffraction tomography. in: Applied Problems of Radon Transform. AMS Translations, series 2, v. 162 (1994) , 33--43.
- R. P. Gilbert and A. Panchenko.
Acoustics of a stratified poroelastic composite.
*Zetitschrift fur Analysis und ihre Anwendungen*, 18 (1999), 977--1001. - Quasi-exponential solutions for some PDE with coefficients of limited regularity. In: Direct and inverse problems of mathematical physics, Kluwer, Dordrecht, 2000, 161--184.
- L. Ehrenpreis, P. Kuchment and A. Panchenko.
The exponential X-Ray transform and John's Equation. I. Range description.
*Contemporary Mathematics*, 251 (2000), 173-188. - On a differential operator containing a large complex parameter.
*Applicable Analysis*, 74 (2000), 1-26. - An inverse problem for the magnetic Schroedinger Equation and
quasi-exponential solutions of nonsmooth partial differential equations.
*Inverse Problems*, 18 (2002), no.5, 1421-1434. - V. Harik, R. P. Gilbert and A. Panchenko. Vibration of two bonded periodic composites.
*International Journal of Solids and Structures*,**40**(2002), no. 12, 3177-3193. - R. P. Gilbert and A. Panchenko. Effective acoustic equations for a nonconsolidated medium with microstructure. In:
*Acoustics, mechanics and the related topics of mathematical analysis*, World Scientific, River Edge, NJ, (2002), 164-170. - L. Paivarinta, A. Panchenko and G. Uhlmann.
Complex geometrical optics solutions for Lipschitz conductivity.
*Revista Matematica Iberoamericana*,**19**(2003), 56-72. - R. P. Gilbert and A. Panchenko. Effective
acoustic equations of a two-phase medium with microstructure.
*Mathematical and Computer Modelling*,**39**, no. 13, (2004), 1431-1448. - L. Berlyand, L. Borcea and A. Panchenko.
Network approximation for effective viscosity of highly concentrated suspensions
with complex geometry.
*SIAM Journ. Math. Analysis*,**36**(5), (2005), 1580-1628. - R. P. Gilbert, A. Panchenko and X. Xie. Homogenization of a viscoelastic matrix
in linear frictional contact.
*Math. Models and Methods in Applied Sciences*,**28**, (2005), 309-328. - R. P. Gilbert, A. Panchenko and X. Xie.
A prototype homogenization model for acoustics of granular materials.
*International Journal of Multiscale Computational Engineering*,**4**, (5--6), (2006), 585--600. - L. Berlyand and A. Panchenko. Strong and weak blow up of the viscous dissipation rates for concentrated suspensions.
*Journal of Fluid Mechanics*, 578 (2007), 1--34. - M. C. Calderer and A. Panchenko.
Young measures and order-disorder transition in liquid crystal flows.
*SIAM Journ. Math. Analysis*,**38**, no. 5 (2007), 1642--1659. - 18. M. Fang, R. P. Gilbert, A. Panchenko and A. Vasilic,
Homogenizing the time-harmonic acoustics of bone: The monophasic case.
*Mathematical and Computer Modelling*,**46**, 3-4, (2007), 331--340. - K. A. Ariyawansa, L. Berlyand and A. Panchenko,
A network model of geometrically constrained deformations of granular materials.
*Networks and Heterogeneous Media.*, (2008),**3**(1), 125--148. - M. C. Calderer, A. DeSimone, D. Golovaty, and A. Panchenko, On an effective model for ferronematic liquid crystals.
*Proceedings of ICIAM-07*, published in*Proceedings on Applied Mathematics and Mechanics*(2007)**7**(1), 1130401-1130402. - A. Cherkaev, A. Kouznetsov, and A. Panchenko. Still sates of bistable lattices, compatibility, and phase transition.
*Continuum Mechanics and Thermodynamics*, (2010), 22 (6-8), 421-444. - R. P. Gilbert, A. Panchenko, and A. Vasilic. Homogenizing acoustics of cancellous bone with an interstitial non-Newtonian fluid.
*Nonlinear Analysis: Theory, Methods, and Applications*, 74 (2011), 1005-1018. - R. P. Gilbert, A. Panchenko and A. Vasilic. Acoustic propagation in a random saturated medium:
the monophasic case.
*Mathematical Methods in the Applied Sciences*, (2010), 33, 18, 2206-2214. - S. Dj. Mesarovic, R. Baskaran and A. Panchenko. Thermodynamic coarsening of dislocation mechanics and
the size-dependent continuum crystal plasticity.
*Journal of the Mechanics and Physics of Solids*, (2010), 58, no. 3, 311-329. - A. Panchenko, L. L. Barannyk, and R. P. Gilbert. Closure method for spatially averaged dynamics of particle chains.
*Nonlinear Analysis: Real World Applications*, 12 (3), (2011), 1681-1697. - A. Tartakovsky, A. Panchenko, and K. Ferris. Dimension reduction method for ODE fluid models.
*Journal of Computational Physics*, 230, (2011), 8554-8572. - R. P. Gilbert, A. Panchenko, and A. Vasilic. Biphasic Acoustic Behavior of a Non-periodic Porous Medium
In
*Poromechanics V: Proceedings of the Fifth Biot Conference on Poromechanics*. Ed. by Ch. Hellmich, B. Pichler; and D. Adam, ASCE Publishing, 2013, 1981-1990. - R. P. Gilbert, A. Panchenko, A. Vasilic, and Yongzhi Xu. Homogenizing the Ultrasonic Response of Wet Cortical Bone.
In
*Poromechanics V: Proceedings of the Fifth Biot Conference on Poromechanics*. Ed. by Ch. Hellmich, B. Pichler; and D. Adam, ASCE Publishing, 2013, 1097-1106. - A. Panchenko, A. Tartakovsky. Discrete models of fluids: spatial averaging, closure, and model reduction.
*SIAM J. Appl. Math*, 74 (2), (2014), 477-515. - R. P. Gilbert, A. Panchenko, and A. Vasilic. Acoustic propagation in a random saturated medium: the biphasic case.
*Applicable Analysis*, 93 (4), (2014), 676-697. - M. C. Calderer, A. DeSimone, D. Golovaty, and A. Panchenko. Effective models for nematic liquid crystals composites with ferromagnetic inclusions.
*SIAM J. Appl. Math.*, 74 (2) (2014), 247-262. - L. L. Barannyk and A. Panchenko. Optimizing performance of deconvolution closure for large ODE systems.
*IMA J. Appl. Math.*, 80 (4) (2015), 1099-1123. doi:10.1093/imamat/hxu042. - D. Hinz, A. Panchenko, T.-Y. Kim, and E. Fried. Motility versus fluctuations: Mixtures of self-propelled and passive particles.
*Soft Matter*, 10 (2014), 9082-9089, DOI: 10.1039/C4SM01562B. - A. Tartakovsky and A. Panchenko. Pairwise Force Smooth Particle Hydrodynamics for multiphase flow: surface tension and contact line dynamics.
*Journal of Computational Physics*, 305 (2016), 1119-1146. - D. Hinz, A. Panchenko, T.-Y. Kim, and E. Fried. Particle-based simulation of self-motile suspensions.
*Computer Physics Communications*, 196 (2015), 45-57. - V. Oles, A. Panchenko, and A. Smertenko. Modeling hormonal control of cambium proliferation.
*PLOS one*, (2017), doi:10.1371/journal.pone.0171927. - A. Panchenko, D. Hinz and E. Fried. Spatial averaging of a dissipative particle dynamics model for active suspensions.
*Physics of Fluids*, 30 (2018), 033331, https://doi.org/10.1063/1.5024746.