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Abstract

Algorithms for the computation of bivariate and trivariate normal and t probabilities for rectangles are reviewed.
The algorithms use numerical integration to approximate transformed probability distribution integrals. A gen-
eralization of Plackett’s formula is derived for bivariate and trivariate t probabilities. New methods are described
for the numerical computation of bivariate and trivariate t probabilities. Test results are provided, along with
recommendations for the most efficient algorithms for single and double precision computations.
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1 Introduction

Bivariate and trivariate probability distribution computations are needed for many statistics applications. Al-
though reliable, efficient and accurate algorithms for univariate probabilities have been available for some time,
high quality algorithms for bivariate and trivariate probability distribution computations have only more recently
started to become available. There is a need for these algorithms as components in statistical computation li-
braries and packages. There is also an increasing need for these algorithms as a means for efficiently computing
good bounds for multivariate probabilities. These bounds can then be used to provide more efficient computation
methods for multivariate probability computations (see Gassmann, 2000, and Genz, Bretz, and Hochberg, 2003).

There are now many algorithms available for computation of bivariate normal (BVN) probabilities, but the
quality of these algorithms has significant variation. In a comparative study of these algorithms by Terza and
Welland (1990), Divgi’s method (1979) was found to outperform a number of other methods for low accuracy work.
Shortly after that paper appeared, Drezner and Wesolowsky (1990) presented a simple method for single precision
work that used less computation time than Divgi’s algorithm. Recently, after a study of different algorithms,
Patefield and Tandy (2000) developed a hybrid double precision algorithm.

Until very recently, there were no accurate and efficient algorithms available for the general trivariate normal
(TVN) problem. Schervish’s algorithm (1984) was the first published numerical algorithm, but this algorithm was
developed for the general multivariate normal problem. This algorithm was followed by algorithms developed by
Cox and Wermuth (1991), Wang and Kennedy (1992), and Drezner (1992, 1994). The recent paper by Gassmann
(2000) studied these algorithms and made some recommendations for algorithms for efficient and reliable TVN
computations. The primary algorithm for bivariate t (BVT) probabilities was developed by Dunnett and Sobel
(1954). There are several general algorithms available for multivariate t probability computations (see the review
by Genz and Bretz, 2002) but these algorithms usually cannot efficiently provide high accuracy results. There are
currently no published specialized algorithms for trivariate t (TV'T) probabilities.

In this paper there is a brief discussion of some modifications to the algorithm of Drezner and Wesolowsky which
provide a double precision BVN algorithm in a simpler form than the algorithm provided by Patefield and Tandy
(2000). This is used as the basis for some TVN algorithms, and some comparisons of different TVN algorithms are
given, along with some discussion of extensions of Gassmann’s work for reliable double precision computations.
These considerations provide some background for work on algorithms for bivariate and trivariate t probability
computations. The main contributions of this paper are some generalizations of Plackett’s (1954) formulas which
provide the basis for some new algorithms for BVT and TVT probabilities. There is a discussion of test results
for the new algorithms. Fortran software for BVN, BVT, TVN and TVT double precision implementations is
available from the author’s website (www.math.wsu.edu/faculty/genz/homepage, in TVPACK).



2 Bivariate Normal Probabilities

2.1 The Standard BVN Problem

The standard bivariate normal distribution function is given by
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where b = (b1,b2). Early work on BVN computations (see Andel, 1974, and Terza and Welland, 1990) studied
the bivariate normal probability defined by
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which is related to the standard bivariate normal distribution function by ®(b, p) = L(—b1, —b2, p). In this section
the discussion will be focused on methods for the computation of L(h, k, p), in order to allow consistent references
to earlier work. Drezner and Wesolowsky (1990) studied the formula
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and used numerical integration for computation of BVN probabilities. The formula derived by Plackett (1954)
for the correlation coefficient partial derivative of the bivariate normal distribution can be written
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The integration of this formula for r between 0 and p produces the formula studied by Drezner and Wesolowsky.
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2.2 The Transformed BVN Problem

If the substitution » = sin § is used, then
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but there is a singularity in the integrand when r = 1 with both formulas, and the Drezner and Wesolowsky
fixed-rule numerical integration method loses accuracy when |p| ~ 1. In order to avoid this singularity, Drezner
and Wesolowsky integrated between p and s = sign(p) rather than between 0 and p to obtain
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If the substitution z = v/1 — r? is used, then
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2.3 Numerical Integration Results

The numerical integration of (4) using a low degree Gauss rule is very accurate when |p| ~ 1, except when h is
close to but not equal to sk. In order to avoid the problems when h ~ sk, Drezner and Wesolowsky rewrote (4)
as
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The integrand in this expression is smooth except for the term e = 222 that is the source of relatively large

errors when h is close to sk. Using the Taylor expansion
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The Drezner and Wesolowsky algorithm computes the second integral numerically, and the integral of the term
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with @ = /1 — p2, b= |h — sk| and ¢ = (4 — shk)/8.

2.4 Hybrid Numerical Integration Algorithms

A hybrid single precision algorithm can use the following strategy: use (3) for |p| < 0.8 and use (6) for |p| > 0.8.
Extensive testing shows that the maximum absolute error for this hybrid algorithm is 2.5 - 1077, if a 5-point
Gauss-Legendre integration rule (see Davis and Rabinowitz, 1984, pp. 95-101) is used. A quadruple precision
BVN algorithm based on Owen’s (1956) series method was used as a source of highly accuracy BVN values for
all of the tests described in this section.

The present author investigated the use of more Gauss points to produce an algorithm that would have
maximum errors near 10~¢ (double precision). In order to avoid very high numbers of Gauss points when |p| ~ 1,
a higher order Taylor expansion can be used in (5). Adding one more term to this expansion yields
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If this modification is incorporated into equation (6) then a 20-point Gauss-Legendre rule used with the
modified equation (6) for |p| > 0.925, and used with equation (3) for |p| < 0.925 results in a maximum absolute
error less than 5- 107! in double precision. A more efficient algorithm can be constructed by selecting Gauss
rules with fewer points for the smaller values of |p|. It was found, for example, that if the algorithm is modified
to use only six points for |p| < 0.3 and twelve points for 0.3 < |p| < 0.75 then the same level of accuracy could be
maintained. These final modifications were incorporated into the Fortran implementation that is available from
the author. Further refinements are obviously possible, at the expense of additional implementation complexity.

3 Trivariate Normal Probabilities

3.1 The Standard TVN Problem

Let the standard trivariate normal distribution function be defined by
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where b = (b1,b2,b3) and R = (p;;) is a correlation matrix. More general TVN problems, where the covariance
matrices do not have unit diagonal entries, can always be rescaled to be problems where the covariance matrix is
a correlation matrix.

Owen (1956) briefly discussed the evaluation of the trivariate integral and gave the formula for the standard
trivariate normal integral in terms of the bivariate normal integral as:

®(b,R) = \/% / " PR s, (9)



where
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and ®(h, k, p) is the standard bivariate normal distribution function.
Two methods were tested by the present author for calculating (9) using numerical integration. The first
method that was tested transforms (9) using z = ®~'(t), so that
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and then a Gauss-Legendre numerical integration rule is used for the interval [0, ®(b1)].

The second method that was tested, which was also considered by Drezner (1992) as a method for general
multivariate normal distribution computations, uses modified Gauss-Hermite rules (see Steen, Byrne and Gelhard,
1969). These rules are suitable for integrals in the form \/#27 /. 0°° e=@"/2 f(z)dz, so (9) needs to be transformed to
a [0, oo] integral. Let y = z — b1, and then
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It was found that both of these methods were often more accurate for a particular integration rule if the integration
limits were arranged so that the shortest integration interval was associated with the outermost integration.
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3.2 Plackett TVN Formulas

The formula derived by Plackett for a correlation coefficient partial derivative of the trivariate normal distribution
can be written fa(pan))2
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Formulas for the two other off-diagonal p;; partial derivatives can be obtained from equation (12) with appropriate
permutations of the b’s and p’s.

Integration of this formula can provide TVN formulas which involve only two-dimensional integrals. Two
Plackett formula methods, studied by Gassmann (2000), are also considered here. The first method uses
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The matrix R* is singular, so ®(b, R*) can be computed using univariate and bivariate distribution values only.
For efficient computation, a permutation of the p’s in R (along with corresponding b’s), and the sign used for p3,,
are chosen to minimize the integration interval width |p3; — pa1].

The second Plackett formula method uses
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In this case, ®(b, R') is easily computed as ®(b1)®((bz, b3), ps2). For efficient numerical integration, a permutation
of the p’s and b’s, is chosen to minimize max(|ps31], |p21]). The integrals for both Plackett formula methods were

transformed using r = sin(f), in order to remove integrand denominator singularities. This second Plackett
method (14) was the method that Drezner (1994) implemented.

3.3 TVN Algorithm Testing

The testing of the algorithms requires a source of highly accurate TVN probabilities was needed for arbitrary b
and R. Initially, Schervish’s MULNOR was tried, but a number of inconsistencies were found, including some clear
discrepancies between some exactly known results and the output from MULNOR. Kennedy and Wang (1992)
also reported erroneous results from MULNOR, although the version of MULNOR used for these tests (emailed
from statlib, and supported by the statlib ®(x)) did not fail for those TVN cases reported as failures by Kennedy
and Wang. All tests reported in the rest of this section used an algorithm based on equation (14), implemented in
quadruple precision with an adaptive numerical integration algorithm (requested absolute accuracy set at 107'%)
combined with a quadruple precision BVN algorithm based on Owen’s (1956) series method, for comparison with
single and double precision results.

In order to carry out careful tests of the different algorithms, a large set of general problems was needed with
variation in all of the six parameters in b and R. Let R = CC”, with
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The first tests that were completed used 61 = 1/258,17/258, ...,257/258, 6, = 1/258,17/258, ...,257/258,
03 = 1/258,17/258, ...,257/258, by = —5,—4,...,5, by = =5, —4,...,5, bg = b2, b2+1,...,5. A complete test with all
of the different combinations of parameters checks more than 2 million values for ®(b, R), and includes problems
with |R| as small as 2 - 10™® The methods using equations (10-11), (13-14) were tested using an integration rule
with a fixed number, K, of integration rule points for K = 6, 12, 24, and the results are given in the first three
rows of Table 1.

The Table 1 (first three row) results are consistent with results reported by Gassmann. The Plackett formula
methods (13-14) were the most accurate. None of the TVN tests described so far used b values that were
approximately equal. This type of limit combination was what motivated the final modifications described in the
previous section for the Drezner-Wesolowsky BVN algorithm. In order to investigate the sensitivity of the TVN
algorithms to this type of problems, another test was completed. This test used the same 6’s that were used for
the Table 1 first three row results, but used by = —5,—4,...,5, b = -5 +¢,—4 +¢,...,5 +€, b3 = bz, ba +1,...,5,
with € = 1072, The 24-point rule results from this test are reported in Table 1, where it can be seen that the
Drezner-Plackett method has a significant increase in maximum error. Additional tests were completed with other
(larger and smaller) €’s but the largest errors occurred near ¢ = 1072,

The results suggest that a 24-point Gauss-Legendre integration rule could be used with TVN algorithms based
on the equations (13) or (14). These algorithms would produce single precision accuracy for most problems.
The equation (13) algorithm appears to be less sensitive to the subtractive cancellation loss of accuracy that
occurs with nearly equal b values. All of these algorithms were implemented in Fortran double precision. The
average time for a TVN probability computation using a Fortran 77 (double precision) implementation with an
800 MHZ Pentium IIT processor was O(107%) seconds for the Plackett formula and Gauss-Hermite algorithm
implementations; the ®~! transform algorithm implementation usually took about 10 times longer.

Some tests were also completed to investigate the possibility of fixed rule double precision TVN algorithms.
Some 48-point Gauss rule results are also provided in Table 1. There were significant decreases in the maximum
errors, but the results suggest that a reliable double precision algorithm might require a Gauss rule with several
hundred points. The use of an adaptive integration was also investigated. A simple globally adaptive algorithm



Table 1: Maximum Errors for TVN Methods for Grid of 8’s
@1 Transform | Gauss-Hermite | Singular Plackett | Drezner-Plackett

€
6-Point Rule 0 1.-1073 3.10°3 6-10~° 1-10°°
12-Point Rule 0 1-10* 2.1073 2.10°° 2.1077
24-Point Rule 0 2-10°° 5-10% 2-10°6 8-1079
24-Point Rule .01 2.10°° 3-10°* 2.10°6 8.-10°7
48-Point Rule 0 7-10-6 — 8.10-8 6-10~11
48-Point Rule .01 2-10-9 — 9.10~8 4.10"10
Adaptive 0 4.107° — 1.10711 3.10~™
Adaptive 01 4-10°° — 4.-10713 1-10718
Adaptive Times | 0 2-1073 s — 7-107%s 8107 %s

similar to the one used in many of the algorithms for QUADPACK (Piessens, deDoncker, Uberhuber and Kahaner,
1983) was selected. This type of algorithm uses a fixed local integration rule that also provides an error estimate.
The rule is first applied to the integrand over the whole integration interval. If the error estimate is larger than
the requested accuracy, then the interval, with associated error and integral estimates, is used to initialize a list.
The algorithm then proceeds in stages. At each stage an interval with largest error is removed from the list and
divided in half. The local integration rule is used on each half of the selected interval and results from the two
halves are added to the list. The algorithm terminates when the sum of the local error estimates is less than the
requested accuracy. The sum of the local integral estimates is returned as the result. After some experimentation,
a 23-point Kronrod rule (see Davis and Rabinowitz, 1984, pp. 106-109) was selected for the local integration
rule. This degree thirty-five rule includes an imbedded 11-point Gauss-Legendre rule. The difference between
results from the two rules is used to provide a local error estimate. This adaptive algorithm was used with
requested accuracy level set at 107**, The results are given in the last three rows of Table 1. The algorithms
based on equations (10), (13) and (14) all had difficulty reliably achieving the requested accuracy level, with the
&' transform method providing the worst performance. These difficulties are probably due to the sensitivity to
subtractive cancellations for all three of the methods. The error averages for the three methods were 1-107'2,
3.1071% 3.107!7, respectively, for the e = 0 test. Overall, the tests suggest that the use of equation (14) with an
adaptive algorithm can provide double precision results for most TVN problems with times less than 10~* seconds
using modern computers. Double precision BVN (BVND) and TVN (part of TVTL) Fortran implementations,
with supporting functions, are available from the author’s website (www.math.wsu.edu/faculty/genz/homepage,
in TVPACK)

4 Bivariate t Probabilities
4.1 The Standard BVT Problem

The standard bivariate t distribution function is defined by
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The Dunnett and Sobel (1954) BVT algorithm has been carefully implemented by the present author. This
algorithm uses finite sums of incomplete beta function values which can easily be computed to accuracies that are
at the same level as the underlying accuracy of the implementation (e.g single, double or quadruple precision in
Fortran). Motivated by work for the development of TVT algorithms, a new BVT algorithm will be described.
The new algorithm uses a generalization of the Plackett formula that is the basis for the BVN algorithms that have
already been described. This section will end with a report and discussion of test results for the two algorithms.



4.2 A Generalized Plackett BVT Formula

A bivariate t generalization of Plackett’s formula requires 97T, (b, p)/0p. If definition (17) is used for T, (b, p), and
Plackett’s formula (2) is used, then
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The integral value is 1“(%)2%_1, so after expanding f3(p), the bivariate t generalization of Plackett’s formula is
given by
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The new formula (18) can be integrated to produce new BVT formulas
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with T, (b) defined as the standard univariate Student’s t distribution. In contrast to the normal case, there is
no easy computation of T}, (b,0) that uses a product of univariate t distribution values. Therefore, a numerical
implementation of an algorithm based on equation (20) was developed. After the change of variables r = sin(8)
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numerical integration can be used to approximate the integral.

4.3 BVT Algorithm Tests

Double precision implementations, using equation (21) with several Gauss-Legendre rules, and with the adaptive
algorithm described in the previous section (absolute error tolerance set at 107'*), were tested. The test used
by =—5,—-4.75,...,5, by =b1,b1 + .25,...,5 , p=—n/(n+1),(—n+4)/(n+1),...,n/(n+ 1) with n = 64, and
v =1,2,...,25, with results given in Table 2, which include average computation time in seconds for the different
integration methods. Additional tests with n = 128,256,512, to check for sensitivity of the algorithms to nearly
singular problems, did not produce significantly different results.

A quadruple precision implementation of an algorithm based on the Dunnett and Sobel (1954) paper was used
for an accurate comparison. A double precision implementation of the Dunnett and Sobel (1954) paper algorithm
reliably achieves double precision results and typically takes about 3 - 107° seconds, approximately one tenth of
the time taken by the adaptive algorithm using equation (21). This time difference and results in Table 2 do not
support the use of methods that use equation (21) with numerical integration for the efficient computation of
BVT probabilities.



Table 2: Generalized Plackett Formula BVT Method Results

€ | Maximum Error | Average Time
6-Point Rule | 0 1-1073 2-107%s
12-Point Rule | 0 1-107* 6-10765s
24-Point Rule 0 1-10° 1-107%s
24-Point Rule | .01 2-10~4 1-107% s
48-Point Rule | 0 6-10"11 2-107% s
48-Point Rule | .01 1-10°° 2-1075 s
Adaptive 0 3-10716 3-107%s
Adaptive .01 6-10716 3-107%s

5 Trivariate t Probabilities
5.1 The Standard TVT Problem

The standard trivariate t distribution function is defined by
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where R is a correlation matrix. An alternate definition (Cornish, 1954) is
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In order to develop an efficient TVT algorithm, some experimentation was initially done with equation (23) using
algorithms that combine a numerical integration method for the outer integral with an efficient method for the
inner TVN integrals. Some of the results of this experimentation will be discussed later in this section, but these
methods, which use the four-dimensional integral in equation (23), do not appear to be as efficient as methods
that use a generalization of Plackett’s formula, and will not be considered in any detail here .

5.2 A Generalized Plackett TVT Formula
A generalization of Plackett’s formula requires 97, (b, R)/0p2:. If definition (23) is used for T, (b, R), then
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If the inner integral is transformed using + = —-y, the exponential terms are combined, a second change of
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variables r = s(1 + M)% is used, and the order of integration is reversed, the result is
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The final change of variables, z = y/(1+ M) %, and some more algebra, produces the new trivariate t formula
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This can be written in a form very similar to the form for equation (12) as
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Appropriate permutations of the b’s and the p’s can be used to provide similar formulas for 07, (b, R)/0p31 and
8T,,(b, R)/ap32.

(24)

5.3 Generalized Plackett TVT Algorithms
The formula (24) can be integrated to produce new TVT formulas (analogous to (13-14))
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(b,R) =T, (b, ") 2”/;);1 e (G sy (25)

and
1 fa(pa1t)\— % ~
1 (14 =02=)7> g (t)
T,(b,R)=T,(b,R) + —/ <p21 v T,
( ) ( ) 27 /1—p§1t2 ((1+M)%)

1 4 f2lez1t)y—% ~

4o I ) T.( uz(t)t o) )dt. (26)
/1 — p§1t2 (1 + f2(/:/31 ))5

The most efficient method for the TVN case used equation (14), so this suggests that equation (26) could be used
for an efficient TVT method. Unfortunately, there is no easy computation of T, (b, R’) that uses univariate and
bivariate t distribution values. However, a combination of equations (25) and (26) can be used for a practical
method. First define

1 00

0 1 s ] ,

0 s 1

R** —

with s = sign(ps2). If equation (25) is used, with variables 1 and 3 interchanged, to compute T, (b, R’) from
T,(b,R™™), then

(My-%
AN * % 1 paz (1+ flT) 2 bl
T,(b,R)=T,(b,R )+27T/s Vi T”((1+@)%)dr’
b3+b2—2rbobs

where fi(r) = R = The simplified b; term in the integrand’s T, argument numerator occurs because the
zeros in R™* result in u;(r) = b;. The equation for the combined method is

1 P32 (1 4 f1(7"))—§ by
il 4 T, dr
2 |/, Vi—r? ((1+_f1y>)%)
C [ (e ey
o \ ey iy
(1+ fz(Pslt))fg

V1= p3it?

The singular T, (b, R**) can be efficiently computed with BVT values using

T,(b,R) = T,(b,R**) +

+ ps1 T, ( () )%) )dt. (27)

(1+ fa(pait)

Hoky T,,((bl,min(bz,bg)),O) ifs: 1
T.(b,R )—{ maz(0, T, (b1, ),0) — T, (b1, ~bs),0)) ifs=-1 °

where T, ((b1,b2), p) is the standard bivariate t distribution function.



Table 3: Maximum (Average) Errors for TVT Methods for Grid of 8’s, v =1

€ T, ! Transformed | Singular Generalized | Combined Generalized

6-Point Rule 0 | 1-1073 (1-1077) 6-107° (7-1077) 4-107° (7-1077)
12-Point Rule 0 | 2-107*(1-1079) 2.107° (1-1077) 1-1075 (1-1077)
24-Point Rule 0 | 3-1075(1-1077) 5-107¢ (2-107%) 2-107% (1-1078)
24-Point Rule 01| 3-1075 (1-1077) 2-107% (2-1077) 2-107% (3-1077)
48-Point Rule 0 | 1-1075 (3-107%) 6-107 (3-1077) 1-1077 (1-1079)
48-Point Rule 01| 7-107% (2-1079) 1-107% (7-1079) 4-1076 (7-107°)
Adaptive 0 |4-10715(2-10717) | 2-10711 (7-10719) 8-107™ (3-10717)
Adaptive 01]2-107(2-10717) | 1-10712 (6-10716) 2-10713 (3-10717)
Adaptive Times | 0 2-107%s 9-107%*s 3-107%s

5.4 TVT Algorithm Tests

A method similar to the TVN method based on equation (10) is also considered here. In this case the TVT
distribution can be written in the form

v+l b1 V41
bR = et [ s ) e,

where

G(ZE) —T (( (u+1)%(b2—p21x) (I/+1)%(b3—p31$) ) P32 — P31P21 )
=1y 19 1) 1"

(w+a)1—p )} (e - (-1 - pi)}
The transformation x = T, () produces the formula

Ty (b1)
ana=/' (T (1))t (28)

which can be used with numerical integration to compute TVT probabilities.

Algorithms that combine numerical integration with equations (25), (27) and (28) were implemented and tested
in a manner similar to that used for the TVN algorithms where the correlation matrices depend on the C (15)
matrices with 6; = 1/258,17/258, ...,257/258, 62 = 1/258,17/258, ...,257/258, 65 = 1/258,17/258, ...,257/258,
and with limits by = —5, —4, ..., 5, by = =5, —4, ..., 5, bg = b2, b2 + 1, ..., 5. Some tests (indicated with ¢ > 0) were
also completed with nearly equal b values. The adaptive integration algorithm used for the three methods had
an absolute error tolerance level set at 107'*. A quadruple precision implementation of the adaptive integration
algorithm applied to equation (27) with absolute error tolerance level set at 107'® was used to provide high
accuracy TVT values for comparisons. This algorithm included a quadruple precision Dunnett and Sobel (1954)
algorithm implementation for special case BVT probabilities.

Tables 3, 4 and 5 provide results using Gauss rule and adaptive integration for methods using equations (28),
(25) and (27) (respectively referred to as the T, * Transformed, Singular Generalized and Combined Generalized
methods) for v = 1, 5,25. Average errors are given in parenthesis for each table entry. The last line of each Table
provides average times in seconds for the adaptive algorithms using an 800 MHZ Pentium III computer. These
times are significantly smaller than typical times for general-purpose algorithms developed for multivariate normal
and multivariate t probability computations (see Genz and Bretz, 2002, and Genz, 1993), where high accuracy
computations are often infeasible. Some testing was also done using adaptive integration for a method based on
equation (23). The outer infinite integration interval was transformed to the adaptive integration interval [0, 1]
using the x, '(s) function, and a Drezner-Plackett method with a fixed integration rule was used for the inner
TVN integral. This method cannot achieve accuracy comparable to the other TVT methods discussed in this
section and average computation times were more than one hundred times larger than average computation times
for the generalized Plackett formula TVT method implementations.

The combined generalized Plackett formula method (equation (27)) provides the highest level of overall accu-
racy. An algorithm based on this method with only a 6-point Gauss rule can provide single precision accuracy for
most TVT problems. An adaptive algorithm (with Fortran implementation TVTL in TVPACK, available from
the author’s website) can provide double precision accuracy for most TVT problems. The algorithm that uses
adaptive integration with the singular generalized Plackett formula is often faster than the combined generalized
Plackett formula algorithm, and this difference is more significant for the larger v values, but this algorithm (like
the related TVN algorithm) appears to be more sensitive to loss of accuracy from rounding errors.
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Table 4: Maximum (Average) Errors for TVT Methods for Grid of 8’s, v =5

€ | T, Transformed | Singular Generalized | Combined Generalized

6-Point Rule 0 [ 1-1073 (8-107%) 6-10~° (1-1077) 2-107° (6-107%)
12-Point Rule 0 | 1-107*(8-1077) 2-107° (2-107%) 1-107% (3-1079)
24-Point Rule 0 | 3-1075 (1-1077) 8-1077 (1-1079) 1-1077 (2-10719)
24-Point Rule 01| 3-1075(1-1077) | 8-107° (2-1077) 8-107° (4-1077)
48-Point Rule 0 | 1-1075(3-107%) | 2-1077 (2-10719) 3-107° (4- 10—12)
48-Point Rule 01| 3-107% (2-1079) 1-107% (4-1079) 1-107% (7-1079)
Adaptive 0 | 5-1077(2-10712) | 1-1071 (7-10719) 1-10713 (2-10717)
Adaptive 01]5-1077 (4-10712) | 1-10712 (5-10719) 2-107% (3-10717)
Adaptive Times | 0 5.-1073 s 2-107%s 4-107%s

Table 5: Maximum (Average) Errors for TVT Methods for Grid of 8’s, v = 25

e | T, ! Transformed | Singular Generalized | Combined Generalized

6-Point Rule 0 [ 1-1073(6-107% | 6-107° (1-107") 1-1075 (1-1077)
12-Point Rule 0 | 1-107*(5-1077) | 2-107° (2-107%) 4-1077 (1-1079)
24-Point Rule 0 | 2-1075 (6-1079) 1-107% (1-1079) 9-107% (2- 10*11)
24-Point Rule 01| 2-107% (5-1079) 1-1074(3-1077) 1- 10 (710" )
48-Point Rule 0 | 5-107%(6-10"%) | 3-1078 (5-10~'1) 4-10710 (5.10713)
48-Point Rule 01| 3-1076(1-107%) | 6-107% (2-107%) 6-1076 (4-10~ )
Adaptive 0 |1-107% (6-10"'2) | 1-10~'* (7-10716) 1-1071% (5-10717)
Adaptive 01 |1-107¢ (1-107) | 1-107'2 (6-1071) 210713 (5-10717)
Adaptive Times | 0 6-1073 s 2.107%s 6-107*s

6 Conclusions

Algorithms for accurate and efficient computations of BVN, TVN, BVT and TVT probabilities were considered.
Generalizations of Plackett’s Normal formulas were derived for the bivariate t and trivariate t cases. An implemen-
tation of an algorithm using the generalized bivariate t formula was significantly slower than an implementation
of the Dunnett and Sobel (1954) algorithm. The Dunnett and Sobel algorithm continues to be the most efficient
algorithm for BVT computations. Although Plackett formula algorithms for TVN and TVT probabilities are
susceptible to moderate loss of accuracy for some types of problems, implementations of algorithms that use
adaptive integration can efficiently produce double precision results for most problems, with times that are less
than O(10™*) seconds for Fortran implementations running on modern computer workstations. Fortran software
for all of the algorithms discussed in this paper is available from the author’s website.
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