Graded HW 1 is coming around.

Checked these: 2.1 6 2 pts
 2.1 33 3 pts
 2.2 18 2 pts
 2.2 15 3 pts

You are always expected to show some work or explanation.

Solutions to the above probs. are posted at my math 216 webpage.
Consider the statement:

All pigs that can fly live in Australia.

Symbolically:

\[P = \text{set of all pigs} \]

\[F(x) \text{ mean } p \in P \text{ can fly} \]

\[A(x) \text{ mean } x \text{ lives in Australia} \]

\[\forall x \in P, \ F(x) \rightarrow A(x) \]

Negation:

\[\neg (\forall x \in P, \ F(x) \rightarrow A(x)) \]

\[\equiv \exists x \in P \text{ such that } \neg (F(x) \rightarrow A(x)) \]

\[\equiv \exists x \in P \text{ such that } F(x) \land \neg A(x) \]
In words: There is a pig that can fly and does not live in Australia.

Clearly false, so original statement must be true.

In general: The statement

$$\forall x \in D, \ p(x) \rightarrow q(x)$$

is considered true if \(p(x) \) is false for all \(x \in D \) "Vacuously"
3.3 Statements involving multiple quantifiers

Example: \(\forall x \in \mathbb{R}^+ \)

\(\exists x \in \mathbb{R}^+ \text{ such that } \forall y \in \mathbb{R}^+, \, x \leq y \).

More formally: \(\exists x \in \mathbb{R}^+ (\forall y \in \mathbb{R}^+ (x \leq y)) \)

In words: there is a smallest positive real

Negation: \(\neg (\exists x \in \mathbb{R}^+ (\forall y \in \mathbb{R}^+ (x \leq y))) \)

\(\equiv \forall x \in \mathbb{R}^+ (\neg (\forall y \in \mathbb{R}^+ (x \leq y))) \)
\[\forall x \in \mathbb{R}^+ \quad (\exists y \in \mathbb{R}^+ \quad (\neg (x \leq y)))\]

\[\equiv \forall x \in \mathbb{R}^+, \exists y \in \mathbb{R}^+ \text{ such that } y < x.\]

In words: For every positive real \(x \), there is a smaller positive real.

Eventually:

\[\neg (\forall x \in D, \exists y \in D \text{ such that } P(x, y))\]

\[\equiv \exists x \in D \text{ such that } \forall y \in D, \neg P(x, y)\]

\[\neg (\forall x \in D, \forall y \in D, P(x, y))\]

\[\equiv \exists x \in D \quad (\exists y \in D \quad (\neg P(x, y)))\]
Note: with \forall, \exists and \exists, \forall, the order does not matter:

\forall people x, \exists person y s.t. x loves y.

\exists person y s.t. \forall people x, x loves y.

3.3(9) $D = \{-2, -1, 0, 1, 2\} = E$

Explain why true:

a) $\forall x \in D, \exists y \in E$ s.t. $x + y = 0$.

This says that for any x chosen from D, there is another element y in E so that $x + y = 0$.
This is true because:
- if \(x = -2 \), use \(y = 2 \)
- if \(x = -1 \), use \(y = 1 \)
- if \(x = 0 \), use \(y = 0 \)
- if \(x = 1 \), use \(y = -1 \)
- if \(x = 2 \), use \(y = -2 \).

3.3 (3) Everybody loves somebody.

\[\forall \text{people } x, \exists \text{ person } y \text{ s.t. } x \text{ loves } y. \]

or \(P = \text{all people}, \ L(x,y) \text{ means } x \text{ loves } y, \)
so:
\[\forall x \in P \left(\exists y \in P \left(L(x,y) \right) \right) \]

(10) d) \(\forall x \in \mathbb{R}^+, \exists y \in \mathbb{R}^+ \text{ s.t. } xy = 1. \)

True. For any chosen \(x \in \mathbb{R}^+ \), \(y = \frac{1}{x} \) works:
\[x \left(\frac{1}{x} \right) = 1, \]
3.4 Arguments involving quantifiers.

The rule of *universal instantiation* (in-stan-she-AY-shun) says the following:

If some property is true of *everything* in a set, then it is true of *any particular* thing in the set.

Can combine this idea with previous argument forms, like this:

\[
\text{Modus Ponens} \quad \begin{align*}
\text{universal Modus Ponens} \\
\forall x, \ P(x) \to Q(x) \end{align*} \\
\begin{align*}
P(a) \\
\hline
Q(a)
\end{align*}
\]

To be continued.