Last time: For \(\sum_{k=1}^{\infty} \frac{3^k}{k^2} (x+4)^k \),

Center: \(a = -4 \)

Radius of convergence? Use Ratio Test:

\[
\lim_{k \to \infty} \left| \frac{(k+1)^{th \text{ term}}}{k^{th \text{ term}}} \right| = \lim_{k \to \infty} \left| \frac{\frac{3^{k+1}(x+4)^{k+1}}{(k+1)^2}}{\frac{3^k(x+4)^k}{k^2}} \right|
\]

\[
= \lim_{k \to \infty} \left| \frac{3(x+4)k^2}{(k+1)^2} \right| = \lim_{k \to \infty} \left(\frac{3k^2}{(k+1)^2} / |x+4| \right)
\]

\[
= |x+4| \lim_{k \to \infty} \left(\frac{3k^2}{(k+1)^2} \right) = |x+4| \cdot 3 = 3|x+4|
\]
So need $3|x+4| < 1$ for convergence

$\implies |x+4| < \frac{1}{3}$

ROC is $\frac{1}{3}$.

Generically: $|x-a| < k$:

\[
\frac{a-k}{a+k} < x < \frac{a+k}{a-k}
\]

Interval of Convergence?

$|x+4| < \frac{1}{3} \iff -\frac{1}{3} < x+4 < \frac{1}{3}$

$\iff -\frac{13}{3} < x < -\frac{11}{3}$

End points A and B.

When $x = -\frac{13}{3}$, series becomes

$$\sum_{k=1}^{\infty} \frac{(-\frac{3}{3})^k}{k^2} = \sum_{k=1}^{\infty} \frac{(-1)^k}{k^2}$$

Converges by A.S.T.

Since $\frac{1}{k^2} \to 0$.

$$A^k B^k = (AB)^k$$
When \(x = \frac{-11}{3} \), series becomes
\[
\sum_{k=1}^{\infty} \frac{3^k}{k^2} \left(\frac{1}{3} \right)^k = \sum_{k=1}^{\infty} \frac{1}{k^2},
\]
convergent p-series, \(p = 2 > 1 \).

So \(T = \left[\frac{13}{3}, \frac{11}{3} \right] \).

Like #4: Consider curve \(\begin{cases} x = 4t^2 - 1 \\ y = \sin(\pi t) \end{cases} \)

a) What \(t \)-value corresponds to the point \((x, y) = (0, -1)\) on this curve?

Sol: \(4t^2 - 1 = 0 \) \(\Rightarrow t^2 = \frac{1}{4} \) \(\Rightarrow t = \pm \frac{1}{2} \).

\(y = \sin(\pi t) = -1 \) \(\Rightarrow \) only \(t = -\frac{1}{2} \) works.

So \(t = -\frac{1}{2} \).
b) Find the equation of the tangent line to this curve at (0, -1).

\[y - (-1) = m(x - 0) \]

To get \(m \):

\[\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{\pi \cos(\pi t)}{8t^2} \]

So,

\[m = \frac{\pi \cos(\pi t)}{8t^2} \bigg|_{t=-\frac{1}{2}} = \frac{\pi \cos(-\frac{\pi}{2})}{8(-\frac{1}{2})} = 0. \]

So the line is \(y + 1 = 0(x - 0) \), or \(y = -1 \).
Question 4. Consider the curve defined by the parametric equations

\[x = \sin t - t \]
\[y = 2 - 2 \cos t \]

A. (5 points) What value of \(t \) corresponds to the point \((\pi, 4)\) on the graph above?

B. (5 points) As \(t \) increases, is the curve traced from left to right or from right to left?

\[a + t = 0, \quad x = 0, \quad y = 0 \]
\[a + t = \frac{\pi}{2}, \quad x = 1 - \frac{\pi}{2} \approx -0.5, \quad y = 2 \]

C. (10 points) Find an expression in terms of \(t \) for \(\frac{dy}{dx} \), the slope of the tangent line to the curve above.
To parameterize a line, like \(y = 3x + 2 \), just do:

\[
\begin{align*}
 x &= t \\
 y &= 3t + 2
\end{align*}
\]

To parameterize a circle, centered at \((0,0)\), with radius 5:

\[
\begin{align*}
 x &= 5 \cos(t) \\
 y &= 5 \sin(t)
\end{align*}
\]
Question 5. The polar curve $r = 1 + 2 \cos 2\theta$ is depicted.

A. (5 points) Give any value of θ that produces the origin as a point on this curve; this occurs when $r = 0$.

\[1 + 2 \cos(2\theta) = 0 \]
\[\cos(2\theta) = -\frac{1}{2} \]

B. (5 points) Give any value of θ that corresponds to a point on this curve where the tangent line is horizontal (you may do this by inspection; you are not required to prove your answer formally using part C.)

C. (10 points) Compute an expression for $\frac{dy}{dx}$, the slope of the tangent line to this curve, in terms of θ.

\[x = r \cos(\theta) = (1 + 2 \cos(2\theta)) \cos(\theta) \]
\[y = r \sin(\theta) = (1 + 2 \cos(2\theta)) \sin(\theta) \]

\[\frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} = \frac{\text{use product rule}}{\text{use product rule}} \]
Question 6. (10 points) The polar curve \(r = \sqrt{3 + \cos \theta} \), \(0 \leq \theta \leq 2\pi \) is depicted. Find the area of the region bounded by this curve (which is not a circle.)

\[
A = \int_{0}^{\pi} \frac{1}{2} (\sqrt{3 + \cos \theta})^2 d\theta
\]

\[
= \int_{0}^{\pi} \frac{1}{2} (3 + \cos \theta) d\theta
\]

\[
= \left[\frac{3\theta}{2} + \sin \theta \right]_{0}^{\pi}
\]

\[
= \frac{3\pi}{2} + \sin \pi - (\frac{3\cdot0}{2} + \sin 0)
\]

\[
= \frac{3\pi}{2} + 0 - 0
\]

\[
= \frac{3\pi}{2}
\]

\[
\text{Area} = \int_{a}^{b} \frac{1}{2} r^2 d\theta = \int_{a}^{b} \frac{1}{2} (f(\theta))^2 d\theta
\]

\[
r = f(\theta)
\]
\(\theta = a, b\)
\[\theta = \frac{3\pi}{2} \]

\[z = 0 \]

\[y = 0 \]

Graph \(V = z + 2 \sin(\theta) \) in \(xy \) plane.
Question 7. (5 points each) Let $\mathbf{u} = (1,3)$ and $\mathbf{v} = (-4,1)$.

A. Illustrate using the parallelogram rule to show $\mathbf{u} + \mathbf{v} = (-3,4)$ on the axes below.

\[\mathbf{u} \cdot \mathbf{v} = (1)(-4) + (3)(1) = -1. \]

\[\mathbf{u} \cdot \mathbf{v} = |\mathbf{u}| |\mathbf{v}| \cos(\theta) \]

B. Compute $\mathbf{u} \cdot \mathbf{v} = (1)(-4) + (3)(1) = -1$.

C. Determine whether the angle between \mathbf{u} and \mathbf{v} is acute, right, or obtuse and justify your choice using your answer from part B.

θ must be $> 90^\circ$.

D. Compute $|\mathbf{u}| = \sqrt{1^2 + 3^2} = \sqrt{10}$.

$\mathbf{v} = (-4,1)$.
D. Find $\mathbf{n} \times \mathbf{v}$.

C. Find the projection of \mathbf{n} onto \mathbf{v}.

B. Find the exact angle θ, $0 \leq \theta \leq \pi$, between \mathbf{n} and \mathbf{v}; it is "nice" multiple of π.

A. Find $\mathbf{n} \cdot \mathbf{v}$.

Question 8: (5 points each) Let $\mathbf{a} = \langle 1, 2 \rangle$ and $\mathbf{b} = \langle 1, 0 \rangle$.

$\mathbf{a} \cdot \mathbf{b} = 1 \cdot 2 = 2$.
Question 9. (10 points) Find an equation of the line passing through the two points (1,3,4) and (5, -1, 0). Write your answer in vector form.

\[\langle x, y, z \rangle = \langle 1, 3, 4 \rangle + \langle 4, -4, -4 \rangle t \]

\[\vec{v}(t) = \langle 1 + 4t, 3 - 4t, 4 - 4t \rangle \]