Math 171 Fall 2014 Final Exam

December 15, 2014

Last Name: Remaley

First Name:

Student ID:

Section:

Remember to show all of your work and provide all necessary explanations for full credit. Good luck and have a good break!

<table>
<thead>
<tr>
<th>Question</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Worth</td>
<td>24</td>
<td>12</td>
<td>14</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>20</td>
<td>150</td>
</tr>
<tr>
<td>Score</td>
<td></td>
</tr>
</tbody>
</table>
Question 1. (4 points each) Compute the following derivatives.

A. \[\frac{d}{dx} \left(5x^3 - 2 - \frac{3}{\sqrt{x}} + \frac{1}{x^2} \right) = \frac{d}{dx} \left(5x^3 - \frac{x}{3} + x^{-\frac{3}{2}} \right) \]
\[= 15x^2 - 0 - \frac{3}{2}x^{-\frac{5}{2}} - 2x^{-3} \]

B. \[\frac{d}{d\theta} \left(\sin \theta - \cos \theta + \tan \theta - \sec \theta \right) \]
\[= \cos \theta + \sin \theta + \sec^2 \theta - \sec \theta \tan \theta \]
Recall that \(\sec^2 \theta \) means \((\sec \theta)^2 \).

C. \[\frac{d}{dx} \left(e^x + \ln x - \tan^{-1} x + \sin^{-1} x \right) \]
\[= e^x + \frac{1}{x} - \frac{1}{1+x^2} + \frac{1}{\sqrt{1-x^2}} \]

D. \[\frac{d}{dx} \left((x^3 + 4x^2) e^x \right) = (x^3 + 4x^2) \cdot \frac{d}{dx} (e^x) + (e^x) \cdot \frac{d}{dx} (x^3 + 4x^2) \]
\[= (x^3 + 4x^2) e^x + e^x (3x^2 + 8x) \]

E. \[\frac{d}{dx} \left(\frac{\sin x + \cos x}{x^2 + 1} \right) \]
\[= \frac{(x^2 + 1) \frac{d}{dx} (\sin x + \cos x) - (\sin x + \cos x) \frac{d}{dx} (x^2 + 1)}{(x^2 + 1)^2} \]
\[= \frac{(x^2 + 1) (\cos x - \sin x) - (\sin x + \cos x) (2x)}{(x^2 + 1)^2} \]

F. \[\frac{d}{dx} (\ln(e^{2x} - \tan x)) = \frac{1}{e^{2x} - \tan x} \cdot \frac{d}{dx} (e^{2x} - \tan x) \]
\[= \frac{e^{2x} \cdot 2 - \sec^2(x)}{e^{2x} - \tan(x)} \]
Question 2. (6 points each) Compute the following indefinite integrals.

A. \(\int (2x^3 - 3 + x^{-1} - x^{-3}) \, dx = \left[\frac{2}{4} x^4 - 3x + \ln |x| - \left(-\frac{1}{4} x^{-2} \right) \right] + C \)

\[\int x^{-1} \, dx = \ln |x| + C \]

Note:
\[\int x^{-1} \, dx = \ln |x| + C \]

B. \(\int x^2 \sec^2(x^3) \, dx \) \quad let \ u = x^3, \ so \ du = 3x^2 \, dx \quad or \quad \frac{1}{3} \, du = x^2 \, dx \)

\[\int \frac{1}{3} \sec^2(u) \, du = \frac{1}{3} \tan(u) + C = \frac{1}{3} \tan(x^3) + C \]

Question 3. (7 points each) Compute the following definite integrals. You are not required to simplify your answers.

A. \(\int_0^{\pi/2} (x^2 + \sin x) \, dx = \left[\frac{1}{3} x^3 - \cos(x) \right] \bigg|_0^{\pi/2} \)

\[= \left[\frac{1}{3} \left(\frac{\pi}{2} \right)^3 - \cos \left(\frac{\pi}{2} \right) \right] - \left[\frac{1}{3} (0)^3 - \cos (0) \right] = \frac{\pi^3}{24} + 1 \]

B. \(\int_1^e \frac{(\ln x)^2}{x} \, dx \) \quad let \ u = \ln(x), \ so \ du = \frac{1}{x} \, dx \).

\[\text{when} \ x = 1, \ u = 0 \quad \text{when} \ x = e, \ u = 1 \]

\[= \int_1^e \left(\frac{\ln x)^2}{u} \right) \, \frac{1}{du} \, du = \int_0^1 u^2 \, du = \frac{1}{3} u^3 \bigg|_0^1 = \frac{1}{3} \]
Question 4. (4 points each) Consider the function \(f(x) = \frac{1}{4}x^4 - \frac{1}{3}x^3 - \frac{1}{2}x^2 + x - 1 \).
For reference, \(f'(x) = (x + 1)(x - 1)^2 \) and \(f''(x) = (x - 1)(3x + 1) \). For full points on each part, justification must be provided.

A. List the critical point(s) of \(f \). \(f' \) is never undefined, so crit. pts are where \(f'(x) = 0 \), which are \(x = -1, x = 1 \).

B. On what interval(s) is the function \(f \) decreasing?

\[
f'(x) = (x+1)(x-1)^2 = -o + o + \]
\[
x: \begin{array}{c}
-1 \\
1
\end{array}
\]

\(f \) decreasing on \((-\infty, -1) \).

C. For each critical point, state whether it is a local minimum, a local maximum or neither.

By chart, \(f \) has local min at \(x = -1 \), no local extremum at \(x = 1 \).

D. On what interval(s) is \(f \) concave up?

\[
f''(x) = (x-1)(3x+1) = +o - o + \]
\[
x: \begin{array}{c}
-\frac{1}{3} \\
1
\end{array}
\]

\(f \) is concave up on \((-\infty, -\frac{1}{3}) \) and on \((1, \infty) \).

E. List the inflection points(s) of \(f \).

Sign of \(f'' \) changes at \(x = -\frac{1}{3} \) and at \(x = 1 \), so inflection points at \(x = -\frac{1}{3}, x = 1 \).

(The points on the graph of \(f \) are \((1, \frac{9}{12}) \) and \((-\frac{1}{3}, \frac{-145}{324}) \).)
Question 5. (20 points) Draw a graph of \(y = f(x) \) on the grid below that passes through the points \((-1,0), (0,1), (1,0), \) and \((2, -1)\) indicated by black dots on the grid. Your graph for \(f \) must be continuous and satisfy the following sign data for \(f' \) and \(f'' \). Also assume \(f'(0) \) and \(f''(0) \) do not exist.

<table>
<thead>
<tr>
<th>Interval</th>
<th>(f'(x))</th>
<th>(f''(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>((-\infty, -1))</td>
<td>Negative</td>
<td>Positive</td>
</tr>
<tr>
<td>((-1,0))</td>
<td>Positive</td>
<td></td>
</tr>
<tr>
<td>((0,1))</td>
<td>Negative</td>
<td>Negative</td>
</tr>
<tr>
<td>((1,2))</td>
<td>Negative</td>
<td>Positive</td>
</tr>
<tr>
<td>((2, \infty))</td>
<td>Positive</td>
<td></td>
</tr>
</tbody>
</table>
Question 6. (20 points) A rectangular sheet of cardboard of width $4w$ and height h (in inches) can be folded into quarters and joined at the ends to make a "square tube" of volume $V = w^2h$ as drawn below:

The manufacturer of the cardboard sheet insists that h be no more than 16 inches and w be no more than 4 inches. What are the values of h and w so that the volume of the square tube is 16 in3 and the quantity $P = w + \frac{1}{4}h$ is minimized?

For full credit, you must justify that you have in fact minimized, rather than maximized, the value of P.

Objective function is $P = w + \frac{1}{4}h$.

Constraint is $\text{vol} = 16$, or $w^2h = 16$, so $h = \frac{16}{w^2}$. So:

$$P = w + \frac{1}{4}(\frac{16}{w^2}) = w + \frac{4}{w^2}.$$

$$\frac{dP}{dw} = 1 - \frac{8}{w^3} = \frac{w^3 - 8}{w^3}; \quad w = 2 \quad \Rightarrow$$

So absolute min P value occurs when $w = 2, h = \frac{16}{2^2} = 4$.

These dimensions satisfy the requirements that $h \leq 16$ and $w \leq 4$, so I'm good.
Question 7. (5 points) Use linear approximation to estimate \(\ln(1.05) \). (NOT ON 2015 EXAM)

Linearize \(f(x) = \ln(x) \) at \(x = 1 \):

\[
f'(x) = \frac{1}{x}, \quad f'(1) = 1, \quad f(1) = 0.
\]

\[
L(x) = f(1) + f'(1) (x-1) = 0 + 1 (x-1) = x-1.
\]

This is just the tangent line to \(y = \ln(x) \) at \(x = 1 \).

So \(\ln(1.05) \approx L(1.05) = 1.05 - 1 = 0.05 \).
Question 8. (5 points) An object’s position function is \(s(t) \) and its velocity function is \(v(t) = s'(t) \). If \(s(1) = 3 \) and \(s(4) = 15 \), the mean value theorem guarantees that the velocity of the object must be what value at some time between \(t = 1 \) and \(t = 4 \)? For full credit, explicitly show the computation that produces your result.

In the Mean Value Theorem, there is a function \(f \). In this problem, \(f \) is the position function \(s \), and then \(f' \) is the velocity function \(v \). So we have:

\[
\begin{align*}
f(1) &= s(1) = 3 \\
\epsilon &= f(4) = s(4) = 15
\end{align*}
\]

\(f'(c) \), or \(v(c) \), is guaranteed to achieve this slope at some \(c \) in \((1,4)\). This slope is:

\[
\frac{s(4) - s(1)}{4 - 1} = \frac{15 - 3}{3} = 4
\]
Question 9. (10 points) Find the absolute minimum and absolute maximum values along with their locations attained by \(f(x) = x^4 - 2x^2 + 4 \) on the interval \([-1,2]\).

\([-1,2]\) is a closed interval, \(f \) is continuous on \([-1,2]\) so absolute extrema must occur at either endpoints or critical numbers.

\[f'(x) = 4x^3 - 4x = 4x(x^2 - 1) , \text{ which is zero when } x = 0, 1, -1. \]

\[f(-1) = 3 \quad \text{abs. min on } [-1,2] \]
\[f(0) = 4 \]
\[f(1) = 3 \]
\[f(2) = 12 \quad \text{abs. max on } [-1,2]. \]

The absolute maximum is 12 occurring at \(x = \underline{2} \)

The absolute minimum is \(\underline{3} \) occurring at \(x = \underline{-1 \text{ and } 1} \)
Question 10. (4 points each) Compute the following limits. Any uses of L'Hopital's rule must be justified for full credit.

A. \[\lim_{x \to -2} \frac{x^3 - 8}{x^2 - 3x + 2} \quad \overset{L'H}{\rightarrow} \quad \lim_{x \to -2} \left(\frac{3x^2}{2x - 3} \right) = 12. \]

B. \[\lim_{x \to \infty} \frac{x^2 + 3x + 2}{e^x} \quad \overset{L'H}{\rightarrow} \quad \lim_{x \to \infty} \left(\frac{2x + 3}{e^x} \right) = \lim_{x \to \infty} \left(\frac{2}{e^x} \right) = 0. \]

C. \[\lim_{x \to 0} \frac{x^3}{x^3 - 3} \quad \overset{\text{(direct sub.)}}{=} \quad 0. \]

D. \[\lim_{t \to 0} \frac{e^t - t - \cos t}{t^2} \quad \overset{L'H}{\rightarrow} \quad \lim_{t \to 0} \left(\frac{e^t - 1 + \sin t}{2t} \right) = \lim_{t \to 0} \left(\frac{e^t + \cos t}{2} \right) = 4. \]

E. \[\lim_{x \to 0^+} (2x)^{3x} \quad \text{If } y = (2x)^{3x}, \quad \lim_{x \to 0^+} \ln(y) = \ln((2x)^{3x}) = 3x \cdot \ln(2x). \]

So \[\lim_{x \to 0^+} \ln(y) = \lim_{x \to 0^+} \left(\frac{3 \ln(2x)}{x} \right) = \lim_{x \to 0^+} \left(\frac{3 \ln(2^x \cdot \frac{1}{x})}{-x - 2} \right) = \lim_{x \to 0^+} (3x) = 0. \] So \(\ln(y) \to 0 \), so \(y \to 1 \).