Math 171 Fall 2014 Final Exam

December 15, 2014

Last Name: ___
First Name: ___
Student ID: ___
Section: ___

Remember to show all of your work and provide all necessary explanations for full credit. Good luck and have a good break!

<table>
<thead>
<tr>
<th>Question</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Worth</td>
<td>24</td>
<td>12</td>
<td>14</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>20</td>
<td>150</td>
</tr>
<tr>
<td>Score</td>
<td></td>
</tr>
</tbody>
</table>
Question 1. (4 points each) Compute the following derivatives.

A. \(\frac{d}{dx} \left(5x^3 - 2 - \frac{3}{\sqrt{x}} + \frac{1}{x^2} \right) \)

B. \(\frac{d}{d\theta} (\sin \theta - \cos \theta + \tan \theta - \sec \theta) \)

C. \(\frac{d}{dx} (e^x + \ln x - \tan^{-1} x + \sin^{-1} x) \)

D. \(\frac{d}{dx} \left((x^3 + 4x^2)e^x \right) \)

E. \(\frac{d}{dx} \left(\frac{\sin x + \cos x}{x^2 + 1} \right) \)

F. \(\frac{d}{dx} (\ln(e^{2x} - \tan x)) \)
Question 2. (6 points each) Compute the following indefinite integrals.

A. \(\int (2x^3 - 3 + x^{-1} - x^{-3}) \, dx \)

B. \(\int x^2 \sec^2(x^3) \, dx \)

Question 3. (7 points each) Compute the following definite integrals. You are not required to simplify your answers.

A. \(\int_0^{\pi/2} (x^2 + \sin x) \, dx \)

B. \(\int_1^e \frac{(\ln x)^2}{x} \, dx \)
Question 4. (4 points each) Consider the function $f(x) = \frac{1}{4} x^4 - \frac{1}{3} x^3 - \frac{1}{2} x^2 + x - 1$. For reference, $f'(x) = (x + 1)(x - 1)^2$ and $f''(x) = (x - 1)(3x + 1)$. For full points on each part, justification must be provided.

A. List the critical point(s) of f.

B. On what interval(s) is the function f decreasing?

C. For each critical point, state whether it is a local minimum, a local maximum or neither.

D. On what interval(s) is f concave up?

E. List the inflection points(s) of f.
Question 5. (20 points) Draw a graph of \(y = f(x) \) on the grid below that passes through the points \((-1,0), (0,1), (1,0), \) and \((2, -1)\) indicated by black dots on the grid. Your graph for \(f \) must be continuous and satisfy the following sign data for \(f' \) and \(f'' \). Also assume \(f'(0) \) and \(f''(0) \) do not exist.

<table>
<thead>
<tr>
<th>Interval</th>
<th>(f'(x))</th>
<th>(f''(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>((-\infty, -1))</td>
<td>Negative</td>
<td></td>
</tr>
<tr>
<td>((-1, 0))</td>
<td>Positive</td>
<td>Positive</td>
</tr>
<tr>
<td>((0, 1))</td>
<td>Negative</td>
<td>Negative</td>
</tr>
<tr>
<td>((1, 2))</td>
<td>Negative</td>
<td>Positive</td>
</tr>
<tr>
<td>((2, \infty))</td>
<td>Positive</td>
<td></td>
</tr>
</tbody>
</table>
Question 6. (20 points) A rectangular sheet of cardboard of width $4w$ and height h (in inches) can be folded into quarters and joined at the ends to make a “square tube” of volume $V = w^2h$ as drawn below:

The manufacturer of the cardboard sheet insists that h be no more than 16 inches and w be no more than 4 inches. What are the values of h and w so that the volume of the square tube is 16 in3 and the quantity $P = w + \frac{1}{4}h$ is minimized?

For full credit, you must justify that you have in fact minimized, rather than maximized, the value of P.
Question 7. (5 points) Use linear approximation to estimate \(\ln(1.05) \). (NOT ON 2015 EXAM)
Question 8. (5 points) An object’s position function is $s(t)$ and its velocity function is $v(t) = s'(t)$. If $s(1) = 3$ and $s(4) = 15$, the mean value theorem guarantees that the velocity of the object must be what value at some time between $t = 1$ and $t = 4$? For full credit, explicitly show the computation that produces your result.
Question 9. (10 points) Find the absolute minimum and absolute maximum values along with their locations attained by $f(x) = x^4 - 2x^2 + 4$ on the interval $[-1,2]$.

The absolute maximum is ___ occurring at $x = __________$

The absolute minimum is ___ occurring at $x = __________$
Question 10. (4 points each) Compute the following limits. Any uses of L’Hopital’s rule must be justified for full credit.

A. \(\lim_{x \to 2} \frac{x^3 - 8}{x^2 - 3x + 2} \)

B. \(\lim_{x \to \infty} \frac{x^2 + 3x + 2}{e^x} \)

C. \(\lim_{x \to 0} \frac{x^3}{x^3 - 3} \)

D. \(\lim_{t \to 0} \frac{e^t - t - \cos t}{t^2} \)

E. \(\lim_{x \to 0^+} (2x)^{3x} \)