An Introduction to Stochastic Calculus

Haijun Li

lih@math.wsu.edu
Department of Mathematics
Washington State University

Week 1
Outline

1. Basic Concepts from Probability Theory
 - Notations
 - Random Vectors

2. Stochastic Processes
 - Basic Definition
 - Distributional Properties
 - Dependence Structure
Sample or outcome space \(\Omega := \{ \text{all possible outcomes } \omega \text{ of the underlying experiment} \} \).
Notations

- Sample or outcome space $\Omega := \{\text{all possible outcomes } \omega \text{ of the underlying experiment}\}$.
- σ-field or σ-algebra \mathcal{F}: A non-empty class of subsets (or observable events) of Ω closed under countable union, countable intersection and complements.
Notations

- **Sample or outcome space** $\Omega := \{\text{all possible outcomes } \omega \text{ of the underlying experiment}\}$.

- **σ-field or σ-algebra** \mathcal{F}: A non-empty class of subsets (or observable events) of Ω closed under countable union, countable intersection and complements.

- **Probability measure** $P(\cdot)$ on \mathcal{F}: $P(A)$ denotes the probability of event A.

Haijun Li

An Introduction to Stochastic Calculus
Notations

- Sample or outcome space $\Omega := \{\text{all possible outcomes } \omega \text{ of the underlying experiment}\}$.
- σ-field or σ-algebra \mathcal{F}: A non-empty class of subsets (or observable events) of Ω closed under countable union, countable intersection and complements.
- Probability measure $P(\cdot)$ on \mathcal{F}: $P(A)$ denotes the probability of event A.
- Random variable $X : \Omega \mapsto \mathbb{R}$ is a real-valued measurable function defined on Ω. That is, events $X^{-1}(a, b) \in \mathcal{F}$ are observable for all $a, b \in \mathbb{R}$.

Induced probability measure $P_X(B) := P(X \in B) = P(\{\omega : X(\omega) \in B\})$, for any Borel set $B \subseteq \mathbb{R}$.

Distribution function $F_X(x) := P(X \leq x)$, $x \in \mathbb{R}$.

Haijun Li
An Introduction to Stochastic Calculus
Week 1 3 / 16
Notations

- Sample or outcome space $\Omega := \{\text{all possible outcomes } \omega \text{ of the underlying experiment}\}$.

- σ-field or σ-algebra \mathcal{F}: A non-empty class of subsets (or observable events) of Ω closed under countable union, countable intersection and complements.

- Probability measure $P(\cdot)$ on \mathcal{F}: $P(A)$ denotes the probability of event A.

- Random variable $X : \Omega \mapsto \mathbb{R}$ is a real-valued measurable function defined on Ω. That is, events $X^{-1}(a, b) \in \mathcal{F}$ are observable for all $a, b \in \mathbb{R}$.

- Induced probability measure $P_X(B) := P(X \in B) = P(\{\omega : X(\omega) \in B\})$, for any Borel set $B \subseteq \mathbb{R}$.
Sample or outcome space $\Omega := \{\text{all possible outcomes } \omega \text{ of the underlying experiment}\}$.

σ-field or σ-algebra \mathcal{F}: A non-empty class of subsets (or observable events) of Ω closed under countable union, countable intersection and complements.

Probability measure $P(\cdot)$ on \mathcal{F}: $P(A)$ denotes the probability of event A.

Random variable $X : \Omega \mapsto \mathbb{R}$ is a real-valued measurable function defined on Ω. That is, events $X^{-1}(a, b) \in \mathcal{F}$ are observable for all $a, b \in \mathbb{R}$.

Induced probability measure $P_X(B) := P(X \in B) = P(\{\omega : X(\omega) \in B\})$, for any Borel set $B \subseteq \mathbb{R}$.

Distribution function $F_X(x) := P(X \leq x), x \in \mathbb{R}$.

Haijun Li
An Introduction to Stochastic Calculus
Week 1
Random variable X is said to be \textit{continuous} if the distribution function F_X has no jumps, that is,

$$\lim_{h \to 0} F_X(x + h) = F_X(x), \forall x \in \mathbb{R}.$$
Continuous and Discrete Random Variables

- Random variable X is said to be **continuous** if the distribution function F_X has no jumps, that is,

$$\lim_{h \to 0} F_X(x + h) = F_X(x), \ \forall x \in \mathbb{R}.$$

Most continuous distributions of interest have a density $f_X \geq 0$:

$$F_X(x) = \int_{-\infty}^{x} f_X(y) dy, \ x \in \mathbb{R}$$

where $\int_{-\infty}^{\infty} f_X(y) dy = 1$.

Continuous and Discrete Random Variables

- Random variable X is said to be continuous if the distribution function F_X has no jumps, that is,

$$\lim_{h \to 0} F_X(x + h) = F_X(x), \ \forall x \in \mathbb{R}.$$

Most continuous distributions of interest have a density $f_X \geq 0$:

$$F_X(x) = \int_{-\infty}^{x} f_X(y) dy, \ x \in \mathbb{R}$$

where $\int_{-\infty}^{\infty} f_X(y) dy = 1$.

- Random variable X is said to be discrete if the distribution function F_X is a pure jump function:

$$F_X(x) = \sum_{k : x_k \leq x} p_k, \ x \in \mathbb{R}$$

where the probability mass function $\{p_k\}$ satisfies that $1 \geq p_k \geq 0$ and $\sum_{k=1}^{\infty} p_k = 1$.
Expectation, Variance and Moments

A General Formula
For a real-valued function g, the expectation of $g(X)$ is given by $Eg(X) = \int g(x)dF_X(x)$. The k-th moment of X is given by $E(X^k) = \int x^k dF_X(x)$. The mean μ_X (or “center of gravity”) of X is the first moment. The variance (or “spread out”) of X is defined as $\sigma_X^2 = \text{var}(X) := E(X - \mu_X)^2$. Clearly $\sigma_X^2 = E(X^2) - \mu_X^2$. If the variance exists, then the Chebyshev inequality holds: $P(|X - \mu_X| > k\sigma_X) \leq \frac{1}{k^2}$, $k > 0$. That is, the probability of tail regions that are k standard deviations away from the mean is bounded by $1/k^2$.
A General Formula

For a real-valued function \(g \), the expectation of \(g(X) \) is given by

\[
Eg(X) = \int g(x) dF_X(x).
\]

- The \(k \)-th moment of \(X \) is given by
 \[
 E(X^k) = \int x^k dF_X(x).
 \]
 The mean \(\mu_X \) (or “center of gravity”) of \(X \) is the first moment.

The variance (or “spread out”) of \(X \) is defined as

\[
\sigma^2_X = \text{var}(X) := E(X - \mu_X)^2.
\]

Clearly

\[
\sigma^2_X = E(X^2) - \mu^2_X.
\]

If the variance exists, then the Chebyshev inequality holds:

\[
P(|X - \mu_X| > k \sigma_X) \leq \frac{1}{k^2}, \quad k > 0.
\]

That is, the probability of tail regions that are \(k \) standard deviations away from the mean is bounded by \(1/k^2 \).
A General Formula

For a real-valued function g, the expectation of $g(X)$ is given by

$$Eg(X) = \int g(x) dF_X(x).$$

- The k-th moment of X is given by $E(X^k) = \int x^k dF_X(x)$. The mean μ_X (or “center of gravity”) of X is the first moment.
- The variance (or “spread out”) of X is defined as $\sigma^2_X = \text{var}(X) := E(X - \mu_X)^2$. Clearly $\sigma^2_X = E(X^2) - \mu^2_X$.
Expectation, Variance and Moments

A General Formula

For a real-valued function g, the expectation of $g(X)$ is given by
$$Eg(X) = \int g(x) dF_X(x).$$

- The k-th moment of X is given by $E(X^k) = \int x^k dF_X(x)$. The mean μ_X (or “center of gravity”) of X is the first moment.
- The variance (or “spread out”) of X is defined as $\sigma^2_X = \text{var}(X) := E(X - \mu_X)^2$. Clearly $\sigma^2_X = E(X^2) - \mu^2_X$.
- If the variance exists, then the Chebyshev inequality holds:
 $$P(|X - \mu_X| > k\sigma_X) \leq k^{-2}, \quad k > 0.$$
 That is, the probability of tail regions that are k standard deviations away from the mean is bounded by $1/k^2$.
Random Vectors

Let $\left(\Omega, \mathcal{F}, P \right)$ be a probability space.

- $\mathbf{X} = (X_1, \ldots, X_d) : \Omega \mapsto \mathbb{R}^d$ denotes a d-dimensional random vector, where its components X_1, \ldots, X_d are real-valued random variables.
Random Vectors

Let (Ω, \mathcal{F}, P) be a probability space.

- $\mathbf{X} = (X_1, \ldots, X_d) : \Omega \mapsto \mathbb{R}^d$ denotes a d-dimensional random vector, where its components X_1, \ldots, X_d are real-valued random variables.

- The induced probability measure: $P_{\mathbf{X}}(B) = P(\mathbf{X} \in B)$
 $:= P(\{\omega : \mathbf{X}(\omega) \in B\})$ for all Borel subsets B of \mathbb{R}^d.

Haijun Li
An Introduction to Stochastic Calculus
Week 1
Random Vectors

Let (Ω, \mathcal{F}, P) be a probability space.

- $X = (X_1, \ldots, X_d) : \Omega \mapsto \mathbb{R}^d$ denotes a d-dimensional random vector, where its components X_1, \ldots, X_d are real-valued random variables.

- The induced probability measure: $P_X(B) = P(X \in B) \ := P(\{\omega : X(\omega) \in B\})$ for all Borel subsets B of \mathbb{R}^d.

- The distribution function $F_X(x) := P(X_1 \leq x_1, \ldots, X_d \leq x_d)$, $x = (x_1, \ldots, x_d) \in \mathbb{R}^d$.

Random Vectors

Let (Ω, \mathcal{F}, P) be a probability space.

- $\bm{X} = (X_1, \ldots, X_d) : \Omega \mapsto \mathbb{R}^d$ denotes a d-dimensional random vector, where its components X_1, \ldots, X_d are real-valued random variables.

- The induced probability measure: $P_\bm{X}(B) = P(\bm{X} \in B) := P(\{\omega : \bm{X}(\omega) \in B\})$ for all Borel subsets B of \mathbb{R}^d.

- The distribution function $F_\bm{X}(\bm{x}) := P(X_1 \leq x_1, \ldots, X_d \leq x_d)$, $\bm{x} = (x_1, \ldots, x_d) \in \mathbb{R}^d$.

- If \bm{X} has a density $f_\bm{X} \geq 0$, then

$$F_\bm{X}(\bm{x}) = \int_{-\infty}^{x_1} \cdots \int_{-\infty}^{x_d} f_\bm{X}(\bm{x}) \, d\bm{x}$$

with $\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f_\bm{X}(\bm{x}) \, d\bm{x} = 1$.
Random Vectors

Let (Ω, \mathcal{F}, P) be a probability space.

- $X = (X_1, \ldots, X_d) : \Omega \mapsto \mathbb{R}^d$ denotes a d-dimensional random vector, where its components X_1, \ldots, X_d are real-valued random variables.

- The induced probability measure: $P_X(B) = P(X \in B) := P(\{\omega : X(\omega) \in B\})$ for all Borel subsets B of \mathbb{R}^d.

- The distribution function $F_X(x) := P(X_1 \leq x_1, \ldots, X_d \leq x_d)$, $x = (x_1, \ldots, x_d) \in \mathbb{R}^d$.

- If X has a density $f_X \geq 0$, then
 \[
 F_X(x) = \int_{-\infty}^{x_1} \cdots \int_{-\infty}^{x_d} f_X(x) \, dx
 \]
 with $\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f_X(x) \, dx = 1$.

- For any $J \subseteq \{1, \ldots, d\}$, let $X_J := (X_j; j \in J)$ be the J-margin of X. The marginal density of X_J is given by
 \[
 f_{X_J}(x_J) = \int f_X(x) \, dx_{J^c}.
 \]
The expectation or mean value of X is denoted by

$$\mu_X = EX := (E(X_1), \ldots, E(X_d)).$$
- The expectation or mean value of X is denoted by
 \[\mu_X = E_X := (E(X_1), \ldots, E(X_d)) \].

- The covariance matrix of X is defined as
 \[\Sigma_X := (\text{cov}(X_i, X_j); i, j = 1, \ldots, d) \]
 where the covariance of X_i and X_j is defined as
 \[\text{cov}(X_i, X_j) := E[(X_i - \mu_{X_i})(X_j - \mu_{X_j})] = E(X_i X_j) - \mu_{X_i} \mu_{X_j}. \]
Expectation, Variance, and Covariance

- The expectation or mean value of X is denoted by
 $$\mu_X = E\mathbf{X} := (E(X_1), \ldots, E(X_d)).$$

- The covariance matrix of X is defined as
 $$\Sigma_X := (\text{cov}(X_i, X_j); i, j = 1, \ldots, d)$$
 where the covariance of X_i and X_j is defined as
 $$\text{cov}(X_i, X_j) := E[(X_i - \mu_{X_i})(X_j - \mu_{X_j})] = E(X_iX_j) - \mu_{X_i}\mu_{X_j}.$$

- The correlation of X_i and X_j is denoted by
 $$\text{corr}(X_i, X_j) := \frac{\text{cov}(X_i, X_j)}{\sigma_{X_i}\sigma_{X_j}}.$$

It follows from the Cauchy-Schwarz inequality that
$$-1 \leq \text{corr}(X_i, X_j) \leq 1.$$
Independence and Dependence

- The events A_1, \ldots, A_n are independent if for any $1 \leq i_1 < i_2 < \cdots < i_k \leq n$,

$$P(\cap_{j=1}^k A_{i_j}) = \prod_{j=1}^k P(A_{i_j}).$$
Indepedence and Dependence

- The events A_1, \ldots, A_n are independent if for any $1 \leq i_1 < i_2 < \cdots < i_k \leq n$,

 \[P(\cap_{j=1}^{k} A_{i_j}) = \prod_{j=1}^{k} P(A_{i_j}). \]

- The random variables X_1, \ldots, X_n are independent if for any Borel sets B_1, \ldots, B_n, the events $\{ X_1 \in B_1 \}, \ldots, \{ X_n \in B_n \}$ are independent.
Independence and Dependence

The events A_1, \ldots, A_n are independent if for any $1 \leq i_1 < i_2 < \cdots < i_k \leq n$,

$$P(\cap_{j=1}^k A_{i_j}) = \prod_{j=1}^k P(A_{i_j}).$$

The random variables X_1, \ldots, X_n are independent if for any Borel sets B_1, \ldots, B_n, the events $\{X_1 \in B_1\}, \ldots, \{X_n \in B_n\}$ are independent.

The random variables X_1, \ldots, X_n are **independent** if and only if $F_{X_1,\ldots,X_n}(x_1,\ldots,x_n) = \prod_{i=1}^n F_{X_i}(x_i)$, for all $(x_1,\ldots,x_n) \in \mathbb{R}^n$.
Independence and Dependence

The events A_1, \ldots, A_n are independent if for any $1 \leq i_1 < i_2 < \cdots < i_k \leq n$,

$$P(\bigcap_{j=1}^{k} A_{i_j}) = \prod_{j=1}^{k} P(A_{i_j}).$$

The random variables X_1, \ldots, X_n are independent if for any Borel sets B_1, \ldots, B_n, the events $\{X_1 \in B_1\}, \ldots, \{X_n \in B_n\}$ are independent.

The random variables X_1, \ldots, X_n are independent if and only if $F_{X_1,\ldots,X_n}(x_1, \ldots, x_n) = \prod_{i=1}^{n} F_{X_i}(x_i)$, for all $(x_1, \ldots, x_n) \in \mathbb{R}^n$.

The random variables X_1, \ldots, X_n are independent if and only if $E[\prod_{i=1}^{n} g_i(X_i)] = \prod_{i=1}^{n} E g_i(X_i)$ for any real-valued functions g_1, \ldots, g_n.
Independence and Dependence

The events A_1, \ldots, A_n are independent if for any $1 \leq i_1 < i_2 < \cdots < i_k \leq n$,

$$P(\bigcap_{j=1}^{k} A_{i_j}) = \prod_{j=1}^{k} P(A_{i_j}).$$

The random variables X_1, \ldots, X_n are independent if for any Borel sets B_1, \ldots, B_n, the events $\{X_1 \in B_1\}, \ldots, \{X_n \in B_n\}$ are independent.

The random variables X_1, \ldots, X_n are independent if and only if

$$F_{X_1, \ldots, X_n}(x_1, \ldots, x_n) = \prod_{i=1}^{n} F_{X_i}(x_i), \text{ for all } (x_1, \ldots, x_n) \in \mathbb{R}^n.$$

The random variables X_1, \ldots, X_n are independent if and only if

$$E[\prod_{i=1}^{n} g_i(X_i)] = \prod_{i=1}^{n} Eg_i(X_i) \text{ for any real-valued functions } g_1, \ldots, g_n.$$

In the continuous case, the random variables X_1, \ldots, X_n are independent if and only if

$$f_{X_1, \ldots, X_n}(x_1, \ldots, x_n) = \prod_{i=1}^{n} f_{X_i}(x_i), \text{ for all } (x_1, \ldots, x_n) \in \mathbb{R}^n.$$
Two Examples

Let $\mathbf{X} = (X_1, \ldots, X_d)$ have a d-dimensional Gaussian distribution. The random variables X_1, \ldots, X_d are independent if and only if $\text{corr}(X_i, X_j) = 0$ for $i \neq j$.
Two Examples

Let \(X = (X_1, \ldots, X_d) \) have a \(d \)-dimensional Gaussian distribution. The random variables \(X_1, \ldots, X_d \) are independent if and only if \(\text{corr}(X_i, X_j) = 0 \) for \(i \neq j \).

For non-Gaussian random vectors, however, independence and uncorrelatedness are not equivalent. Let \(X \) be a standard normal random variable. Since both \(X \) and \(X^3 \) have expectation zero, \(X \) and \(X^2 \) are uncorrelated:

\[
\text{cov}(X, X^2) = E(X^3) - E(X)E(X^2) = 0.
\]

But \(X \) and \(X^2 \) are clearly dependent (co-monotone). Since \(\{X \in [-1, 1]\} = \{X^2 \in [0, 1]\} \), we obtain

\[
P(X \in [-1, 1], X^2 \in [0, 1]) = P(X \in [-1, 1])
\]

\[
> [P(X \in [-1, 1])]^2 = P(X \in [-1, 1])P(X^2 \in [0, 1]).
\]
Autocorrelations

For a time series X_0, X_1, X_2, \ldots the autocorrelation at lag h is defined by $\text{corr}(X_0, X_h)$, $h = 0, 1, \ldots$.

Log-returns $X_t := \log S_t - S_{t-1}$, where S_t is the price of a speculative asset (equities, indexes, exchange rates and commodity) at the end of the t-th period. If the relative returns are small, then $X_t \approx S_t - S_{t-1} / S_{t-1}$. Note that the log-returns are scale-free, additive, stationary, ...

Stylized Fact #1: Log-returns X_t are not iid (independent and identically distributed) although they show little serial autocorrelation.

Stylized Fact #2: Series of absolute $|X_t|$ or squared X_t^2 returns show profound serial autocorrelation (long-range dependence).
Autocorrelations

- For a time series X_0, X_1, X_2, \ldots the autocorrelation at lag h is defined by $\text{corr}(X_0, X_h), h = 0, 1, \ldots$.

- Log-returns $X_t := \log \frac{S_t}{S_{t-1}}$, where S_t is the price of a speculative asset (equities, indexes, exchange rates and commodity) at the end of the t-th period. If the relative returns are small, then $X_t \approx \frac{S_t - S_{t-1}}{S_{t-1}}$. Note that the log-returns are scale-free, additive, stationary,
Autocorrelations

- For a time series X_0, X_1, X_2, \ldots the autocorrelation at lag h is defined by $\text{corr}(X_0, X_h)$, $h = 0, 1, \ldots$.

- Log-returns $X_t := \log \frac{S_t}{S_{t-1}}$, where S_t is the price of a speculative asset (equities, indexes, exchange rates and commodity) at the end of the t-th period. If the relative returns are small, then $X_t \approx \frac{S_t - S_{t-1}}{S_{t-1}}$. Note that the log-returns are scale-free, additive, stationary,

- **Stylized Fact #1:** Log-returns X_t are not iid (independent and identically distributed) although they show little serial autocorrelation.
For a time series X_0, X_1, X_2, \ldots the autocorrelation at lag h is defined by $\text{corr}(X_0, X_h)$, $h = 0, 1, \ldots$.

Log-returns $X_t := \log \frac{S_t}{S_{t-1}}$, where S_t is the price of a speculative asset (equities, indexes, exchange rates and commodity) at the end of the t-th period. If the relative returns are small, then $X_t \approx \frac{S_t - S_{t-1}}{S_{t-1}}$. Note that the log-returns are scale-free, additive, stationary,

Stylized Fact #1: Log-returns X_t are not iid (independent and identically distributed) although they show little serial autocorrelation.

Stylized Fact #2: Series of absolute $|X_t|$ or squared X_t^2 returns show profound serial autocorrelation (long-range dependence).
A stochastic process $X := (X_t, t \in T)$ is a collection of random variables defined on some space Ω, where $T \subseteq \mathbb{R}$.
A stochastic process $X := (X_t, t \in T)$ is a collection of random variables defined on some space Ω, where $T \subseteq \mathbb{R}$.

If index set T is a finite or countably infinite set, X is said to be a discrete-time process. If T is an interval, then X is a continuous-time process.
A stochastic process $X := (X_t, t \in T)$ is a collection of random variables defined on some space Ω, where $T \subseteq \mathbb{R}$.

If index set T is a finite or countably infinite set, X is said to be a discrete-time process. If T is an interval, then X is a continuous-time process.

A stochastic process X is a (measurable) function of two variables: time t and sample point ω.

Fix time t, $X_t = X_t(\omega), \omega \in \Omega$, is a random variable.

Fix sample point ω, $X_t = X_t(\omega), t \in T$, is a sample path.
A stochastic process \(X := (X_t, t \in T) \) is a collection of random variables defined on some space \(\Omega \), where \(T \subseteq \mathbb{R} \).

If index set \(T \) is a finite or countably infinite set, \(X \) is said to be a discrete-time process. If \(T \) is an interval, then \(X \) is a continuous-time process.

A stochastic process \(X \) is a (measurable) function of two variables: time \(t \) and sample point \(\omega \).

Fix time \(t \), \(X_t = X_t(\omega), \omega \in \Omega \), is a random variable.

Fix sample point \(\omega \), \(X_t = X_t(\omega), t \in T \), is a sample path.

Example: An autoregressive process of order 1 is given by

\[
X_t = \phi X_{t-1} + Z_t, \quad t \in \mathbb{Z},
\]

where \(\phi \) is a real parameter. Time series models can be understood as discretization of stochastic differential equations.
Finite-Dimensional Distributions

- All possible values of a stochastic process $X = (X_t, t \in T)$ constitute a function space of all sample paths $(X_t(\omega), t \in T), \forall \omega \in \Omega$.

Example: A stochastic process is called Gaussian if all its finite-dimensional distributions are multivariate Gaussian. The distribution of this process is determined by the collection of the mean vectors and covariance matrices.
Finite-Dimensional Distributions

- All possible values of a stochastic process $X = (X_t, t \in T)$ constitute a function space of all sample paths $(X_t(\omega), t \in T), \forall \omega \in \Omega$.

- Specifying the distribution of X on this function space is equivalent to specifying which information is available in terms of the observable events from the σ-field generated by X.

Example: A stochastic process is called Gaussian if all its finite-dimensional distributions are multivariate Gaussian. The distribution of this process is determined by the collection of the mean vectors and covariance matrices.
Finite-Dimensional Distributions

- All possible values of a stochastic process $X = (X_t, t \in T)$ constitute a function space of all sample paths $(X_t(\omega), t \in T), \forall \omega \in \Omega$.

- Specifying the distribution of X on this function space is equivalent to specifying which information is available in terms of the observable events from the σ-field generated by X.

- The distribution of X can be described by the distributions of the finite-dimensional vectors

 $$(X_{t_1}, \ldots, X_{t_n}), \text{ for all possible choices of times } t_1, \ldots, t_n \in T.$$
Finite-Dimensional Distributions

- All possible values of a stochastic process $X = (X_t, t \in T)$ constitute a function space of all sample paths $(X_t(\omega), t \in T), \forall \omega \in \Omega$.

- Specifying the distribution of X on this function space is equivalent to specifying which information is available in terms of the observable events from the σ-field generated by X.

- The distribution of X can be described by the distributions of the finite-dimensional vectors

 $$(X_{t_1}, \ldots, X_{t_n}), \text{ for all possible choices of times } t_1, \ldots, t_n \in T.$$

- **Example:** A stochastic process is called Gaussian if all its finite-dimensional distributions are multivariate Gaussian. The distribution of this process is determined by the collection of the mean vectors and covariance matrices.
The expectation function of a process $X = (X_t, t \in T)$ is defined as

$$\mu_X(t) := \mu_{X_t} = EX_t, \; t \in T.$$
Expectation and Covariance Functions

The expectation function of a process $X = (X_t, t \in T)$ is defined as

$$\mu_X(t) := \mu_{X_t} = EX_t, \quad t \in T.$$

The covariance function of X is given by

$$C_X(t, s) := \text{cov}(X_t, X_s) = E[(X_t - EX_t)(X_s - EX_s)], \quad t, s \in T.$$

In particular, the variance function of X is given by

$$\sigma^2_X(t) = C_X(t, t) = \text{var}(X_t), \quad t \in T.$$
The expectation function of a process $X = (X_t, t \in T)$ is defined as
$$\mu_X(t) := \mu_{X_t} = \mathbb{E}X_t, \ t \in T.$$

The covariance function of X is given by
$$C_X(t, s) := \text{cov}(X_t, X_s) = \mathbb{E}[(X_t - \mathbb{E}X_t)(X_s - \mathbb{E}X_s)], \ t, s \in T.$$

In particular, the variance function of X is given by
$$\sigma_X^2(t) = C_X(t, t) = \text{var}(X_t), \ t \in T.$$

Example: A Gaussian white noise $X = (X_t, 0 \leq t \leq 1)$ consists of iid $N(0, 1)$ random variables. In this case its finite-dimensional distributions are given by, for any $0 \leq t_1 \leq \cdots \leq t_n \leq 1$,
$$P(X_{t_1} \leq x_1, \ldots, X_{t_n} \leq x_n) = \prod_{i=1}^n P(X_{t_i} \leq x_i) = \prod_{i=1}^n \Phi(x_i), \ \forall x \in \mathbb{R}^n.$$

Its expectation and covariance functions are given by $\mu_X(t) = 0$,
$$C_X(t, s) = \begin{cases} 1 & \text{if } t = s \\ 0 & \text{if } t \neq s \end{cases}$$
A process $X = (X_t, t \in T)$ is said to be \textit{strictly stationary} if for any $t_1, \ldots, t_n \in T$

$$(X_{t_1}, \ldots, X_{t_n}) = d (X_{t_1+h}, \ldots, X_{t_n+h}).$$

That is, its finite-dimensional distribution functions are invariant under time shifts.
Dependence Structure

A process $X = (X_t, t \in T)$ is said to be strictly stationary if for any $t_1, \ldots, t_n \in T$

$$(X_{t_1}, \ldots, X_{t_n}) \overset{d}{=} (X_{t_1+h}, \ldots, X_{t_n+h}).$$

That is, its finite-dimensional distribution functions are invariant under time shifts.

A process $X = (X_t, t \in T)$ is said to have stationary increments if

$$X_t - X_s \overset{d}{=} X_{t+h} - X_{s+h}, \quad \forall t, s, t + h, s + h \in T.$$
A process $X = (X_t, t \in T)$ is said to be **strictly stationary** if for any $t_1, \ldots, t_n \in T$

$$(X_{t_1}, \ldots, X_{t_n}) =_d (X_{t_1+h}, \ldots, X_{t_n+h}).$$

That is, its finite-dimensional distribution functions are invariant under time shifts.

A process $X = (X_t, t \in T)$ is said to have **stationary increments** if

$$X_t - X_s =_d X_{t+h} - X_{s+h}, \ \forall t, s, t+h, s+h \in T.$$

A process $X = (X_t, t \in T)$ is said to have **independent increments** if for all $t_1 < \cdots < t_n$ in T,

$$X_{t_2} - X_{t_1}, \ldots, X_{t_n} - X_{t_{n-1}}$$

are independent.
Strictly Stationary vs Stationary

A process X is said to be stationary (in the wide sense) if

$$\mu_X(t + h) = \mu_X(t), \text{ and } C_X(t, s) = C_X(t + h, s + h).$$
Strictly Stationary vs Stationary

A process X is said to be **stationary (in the wide sense)** if

$$
\mu_X(t + h) = \mu_X(t), \text{ and } C_X(t, s) = C_X(t + h, s + h).
$$

If second moments exist, then the strictly stationarity implies the stationarity.
A process X is said to be **stationary (in the wide sense)** if

$$
\mu_X(t + h) = \mu_X(t), \quad \text{and} \quad C_X(t, s) = C_X(t + h, s + h).
$$

If second moments exist, then the strictly stationarity implies the stationarity.

Example: Consider a strictly stationary Gaussian process X. The distribution of X is determined by $\mu_X(0)$ and $C_X(t, s) = g_X(|t - s|)$ for some function g_X. In particular, for Gaussian white noise X, $g_X(0) = 1$ and $g_X(x) = 0$ for any $x \neq 0$.
A stochastic process $X = (X_t, t \geq 0)$ is called an Poisson process with intensity rate $\lambda > 0$ if
Homogeneous Poisson Process

A stochastic process \(X = (X_t, t \geq 0) \) is called an **Poisson process** with intensity rate \(\lambda > 0 \) if

- \(X_0 = 0 \),

Simulation of Poisson Processes

Simulate iid exponential \(\text{Exp}(\lambda) \) random variables \(Y_1, Y_2, \ldots \), and set \(T_n := \sum_{i=1}^{n} Y_i \). The Poisson process can be constructed by \(X_t := \# \{ n : T_n \leq t \} , t \geq 0 \).

Example: Claims arriving in an insurance portfolio.
Homogeneous Poisson Process

A stochastic process $X = (X_t, t \geq 0)$ is called an **Poisson process** with intensity rate $\lambda > 0$ if

- $X_0 = 0$,

- it has stationary, independent increments, and
Homogeneous Poisson Process

A stochastic process $X = (X_t, t \geq 0)$ is called an **Poisson process** with intensity rate $\lambda > 0$ if

- $X_0 = 0$,
- it has stationary, independent increments, and
- for every $t > 0$, X_t has a Poisson distribution $\text{Poi}(\lambda t)$.
A stochastic process $X = (X_t, t \geq 0)$ is called an Poisson process with intensity rate $\lambda > 0$ if

- $X_0 = 0$,
- it has stationary, independent increments, and
- for every $t > 0$, X_t has a Poisson distribution $\text{Poi}(\lambda t)$.

Simulation of Poisson Processes

Simulate iid exponential $\text{Exp}(\lambda)$ random variables Y_1, Y_2, \ldots, and set $T_n := \sum_{i=1}^n Y_i$. The Poisson process can be constructed by

$$X_t := \#\{n : T_n \leq t\}, \ t \geq 0.$$
Homogeneous Poisson Process

A stochastic process \(X = (X_t, t \geq 0) \) is called an **Poisson process** with intensity rate \(\lambda > 0 \) if

- \(X_0 = 0 \),
- it has stationary, independent increments, and
- for every \(t > 0 \), \(X_t \) has a Poisson distribution \(\text{Poi}(\lambda t) \).

Simulation of Poisson Processes

Simulate iid exponential \(\text{Exp}(\lambda) \) random variables \(Y_1, Y_2, \ldots, \) and set \(T_n := \sum_{i=1}^{n} Y_i \). The Poisson process can be constructed by

\[
X_t := \#\{n : T_n \leq t\}, \quad t \geq 0.
\]

Example: Claims arriving in an insurance portfolio.