Recall
\[x_j = \begin{cases} 1 & \text{if player } j \text{ starts} \\ 0 & \text{o.w.} \end{cases} \]

Logical constraints (if-then and either-or constraints)

3. \(x_3 + x_6 \leq 1 \) (if player 3 starts, player 6 cannot)
or (at most one of players 3 & 6 can start)

If we write \(x_3 + x_6 = 1 \) instead, we are insisting that exactly one of them must start.

4. \(x_4 \geq x_1, \quad x_5 \geq x_1 \) (if player 1 starts, players 4 and 5 must start)

Again, we do not want to write \(x_4 = x_1 \) & \(x_5 = x_1 \) here. These constraints model "either players 1, 4, and 5 all start, or all do not start."

Alternatively, we could write
\[x_4 + x_5 \geq 2x_1 \]
(by aggregating or adding both constraints)

Check: \(x_1 = 1 \Rightarrow x_4 + x_5 \geq 2 \)
\[\Rightarrow x_4 = x_5 = 1 \]
\(x_1 = 0 \Rightarrow x_4 + x_5 \geq 0, \) which is redundant
5. \(x_2 + x_3 \geq 1 \) (either player 2 or player 3 or both must start) \(\checkmark \) this constraint allows both of them starting

\(x_2 + x_3 = 1 \) forces that exactly one of players 2 and 3 but not both must start.

by default, assume OR, and not exclusive-OR (XOR) unless specified otherwise. So use \(\geq \) by default, and not \(= \).

Objective function

\[
\text{max } Z = 3x_1 + 2x_2 + 2x_3 + x_4 + 3x_5 + 3x_6 + x_7 \quad \text{(total defense)}
\]

Prob 3. WV-1MP pg 502 503 fixed cost/charge problem

3 A manufacturer can sell product 1 at a profit of $2/unit and product 2 at a profit of $5/unit. Three units of raw material are needed to manufacture 1 unit of product 1, and

6 units of raw material are needed to manufacture 1 unit of product 2. A total of 120 units of raw material are available. If any of product 1 is produced, a setup cost of $10 is incurred, and if any of product 2 is produced, a setup cost of $20 is incurred. Formulate an IP to maximize profits.

decisions 1. how many of each product to make?
 2. set up costs — do we make any of products 1 and 2 at all?
\(x_j = \# \text{ units of product } j \text{ made, } j=1,2 \)
\(x_j \geq 0, \text{ not necessary to insist on being integers} \)
\(y_j = \begin{cases} 1 & \text{if } x_j > 0 \quad (\text{if any of product 1 is made}) \\ 0 & \text{o.w.} \end{cases} \)

Constraints

\[3x_1 + 6x_2 \leq 120 \quad (\text{raw math. limit}) \]

Objective function

\[\max \ Z = 2x_1 + 5x_2 - 10y_1 - 20y_2 \quad (\text{profit}) \]

We need to model the relationship between \(x_j \) and \(y_j \):

\[x_1 \leq M_1 y_1 \quad (\text{forcing constraints}) \]
\[x_2 \leq M_2 y_2 \quad M_1, M_2 \text{ are big positive numbers.} \]

We want to use the smallest \(M_1 \) and \(M_2 \) that work.

If \(x_1 > 0 \), it can satisfy \(x_1 \leq M_1 y_1 \) only with \(y_1 = 1 \).

But if \(x_1 = 0 \), \(y_1 \) could be 0 or 1, just based on this constraint. But, the coefficient of \(y_1 \) in the max objective function is \(-10\), and hence \(y_1 \) is set to 0 in this case.

Similar explanation for \(x_2 \approx y_2 \) relationship.
Smallest values of M_1 and M_2

\[M_1 = \frac{120}{3} = 40 \]
\[M_2 = \frac{120}{6} = 20 \]

the max # of products 1 and 2 that could be made.

With $y_1 = 1$, the forcing constraint for product 1 reads

\[x_1 \leq M_1, \text{ i.e., it specifies an upper bound on the } \]
\[\# \text{ units product 1 that could be made.} \]

The complete MILP is presented here:

\[
\begin{align*}
\text{max } \quad Z &= 2x_1 + 5x_2 - 10y_1 - 20y_2 \\
\text{s.t. } \\
3x_1 + 6x_2 &\leq 120 \quad \text{(raw mate)} \\
x_1 &\leq 40y_1 \quad \text{(forcing constraint 1)} \\
x_2 &\leq 20y_2 \quad \text{(forcing constraint 2)} \\
x_1, x_2 &\geq 0, \quad y_1, y_2 \in \{0,1\} \\
\text{or } \\
y_1, y_2 &\text{ binary}
\end{align*}
\]

If we do not have a way to estimate good (i.e., small) values of M_1 and M_2 that work, we could use large numbers, e.g., $M_1 = M_2 = 10^6$, for instance. In practice, though, really large values of M_1, M_2 could make the problem harder to solve.
Facility location problem (from the project)

- \bigcirc → candidate facility location (depot)
- \times → customer
- \bullet → facility opened in candidate location j ($y_j = 1$)
- $\times \rightarrow \bullet$ customer i assigned to facility j ($x_{ij} = 1$)

Definitions:

$$y_j = \begin{cases} 1 & \text{if facility located in depot location } j \\ 0 & \text{otherwise} \end{cases}, \quad j = 1, \ldots, n$$

$$x_{ij} = \begin{cases} 1 & \text{if customer } i \text{ is assigned to facility in location } j \\ 0 & \text{o.w.} \end{cases}, \quad i = 1, \ldots, m, j = 1, \ldots, n$$

The aggregate and disaggregate models differ in how we enforce the relationship between the sets of binary variables x_{ij} and y_j. The restriction we want to model is the following.

We can assign any customer to the facility in location j only if we indeed locate (or open) a facility in the candidate location j.
The aggregate model:
\[\sum_{i=1}^{m} x_{ij} \leq m y_j \quad \text{for } j = 1, \ldots, n \]

We could possibly assign up to all of the m customers to the facility opened in location \(j \) — hence \(m \) could be used in place of the big-M here.

The disaggregate model:
\[x_{ij} \leq y_j \quad \text{for } i = 1, \ldots, m, \quad j = 1, \ldots, n \]

We force the relationships separately for each customer-location pair \((i, j)\) here. The big-M can hence be chosen as 1 here.

There are \(n \) constraints (one for each location) in the aggregate model, while there are \(mn \) constraints in the disaggregate model. But the disaggregate constraints are tighter, as all big-M values are 1, the smallest possible. The difference becomes large when \(m \) (and \(n \)) are large — and you can see it in the computation!