7. (14) Sketch the region of integration, and write an equivalent integral with the order of integration reversed. Then evaluate this reverse ordered integral.

\[I = \int_0^1 \int_{x^2}^x \sqrt{x} \, dy \, dx. \]

I uses vertical cross sections.

Y varies from \(x^2 \) to \(x \), and

X varies from 0 to 1.

Points of intersection of \(y = x \) and \(y = x^2 \):

\[x = x^2, \quad \text{i.e.} \quad x(x-1) = 0, \]

Giving \(x = 0,1 \), for which \(y = 0,1 \).

The points of intersection are \((0,0)\) and \((1,1)\).

Reversing the order of integration, we write

\[I = \int_0^1 \int_{\sqrt{y}}^{y} \sqrt{x} \, dx \, dy. \]

\[= \int_0^1 \left[\frac{2}{3} \sqrt{y} \right]_{\sqrt{y}}^{y} \, dy = \frac{2}{3} \int_0^1 \left(y^{3/2} - (\sqrt{y})^{3/2} \right) \, dy \]

\[= \frac{2}{3} \left[\frac{4}{7} y^{7/4} - \frac{2}{5} y^{5/2} \right]_0^1 = \frac{2}{3} \left[\frac{4}{7} (1) - \frac{2}{5} (1) \right] - 0 \]

\[= \frac{2}{3} \left(\frac{4 \times 5 - 2 \times 7}{7 \times 5} \right) = \frac{2 \times 6}{3 \times 35} = \frac{4}{35}. \]
6. (12) Evaluate the double integral over the given region \(R \).

\[
I = \iint_R xy e^{xy^2} \, dA, \quad R : 0 \leq x \leq 2, \ 0 \leq y \leq 1.
\]

\[
I = \int_0^2 \int_0^1 xy e^{xy^2} \, dy \, dx
\]

\[
\begin{align*}
&= \int_0^2 \left(\frac{1}{2} e^{xy^2} \right)_0^1 \, dx \\
&= \frac{1}{2} \int_0^2 \left(e^x - 1 \right) \, dx \\
&= \frac{1}{2} \left[e^x - x \right]_0^2 \\
&= \frac{1}{2} \left[e^2 - 2 - (e^0) \right] \\
&= \frac{1}{2} \left(e^2 - 3 \right).
\end{align*}
\]

Notice that

\[
\frac{\partial}{\partial y} (e^{xy^2}) = e^{xy^2} \cdot x = x(2y) \cdot e^{xy^2} = 2xy e^{xy^2}
\]

so, integrating first w.r.t. \(x \) is much harder here!

8. (6) Decide whether each of the following statements is True or False. Justify your answer.

(a) A point that gives the absolute maximum of a function in a given region \(R \) must also be a local maximum of the function.

(b) Swapping the lower and upper limits of both integrals in a double integral leaves the value of the double integral unchanged.

(a) FALSE. The absolute maximum could occur on the boundary of \(R \).

(b) TRUE. Each swap multiplies the integral by \(-1\), so the value is unchanged as \((-1)(-1) = 1\).
3. (12) Let \(y = uv \). If \(u \) is measured with an error of 2\% and \(v \) is measured with an error of 3\%, estimate the percentage error in the calculated value of \(y \).

\[
y = uv
\]

The total differential of \(y \) is

\[
\frac{1}{y} (dy = u dv + v du).
\]

We want \(\frac{dy}{y} \), given

\[
\frac{du}{u} = 2\%, \quad \frac{dv}{v} = 3\%.
\]

Equivalently, \(\frac{du}{u} \times 100 = 2 \), \(\frac{dv}{v} \times 100 = 3 \).

\[
\frac{dy}{y} = \frac{udv}{uv} + \frac{vdv}{uv} = \frac{dv}{v} + \frac{du}{u} = 2\% + 3\% = 5\%.
\]

y = uv gives

\[
\frac{dy}{y} = \frac{udv}{uv} + \frac{vdv}{uv} = \frac{dv}{v} + \frac{du}{u} = 2\% + 3\% = 5\%.
\]

5. (16) Find the absolute maximum and minimum values of \(f(x, y) = x^2 + xy + y^2 - 3x + 3y \)
on the region \(R \) that is the part of the line \(x + y = 4 \) lying in the first quadrant.

\(R \) cannot have interior critical points.

\(R \) is \(\overline{AB} \) from \(A(4,0) \) to \(B(0,4) \).

On \(\overline{AB} \), \(y = 4 - x \), hence

\[
f(x, 4-x) = f(x) = x^2 + x(4-x) + (4-x)^2 - 3x + 3(4-x)
= x^2 + 4x - x^2 + x^2 - 8x + 16 - 3x + 12 - 3x
= x^2 - 10x + 28
\]

\[
f'(x) = 2x - 10 = 0 \text{ gives } x = 5, \text{ giving } y = 4 - 5 = -1.
\]

But \((5, -1)\) is not on \(\overline{AB} \). So we just check \(f(x, y) \)
at \(A(4,0) \) and \(B(0,4) \).
\[f(x, y) = x^2 + xy + y^2 - 3x + 3y \]

A: \(f(4, 0) = (4)^2 + 0 + 0 - 3(4) + 0 = 4 \leftarrow \text{absolute minimum} \)

B: \(f(0, 4) = (0)^2 + 0 + (4)^2 - 0 + 3(4) = 28 \leftarrow \text{absolute maximum} \)

4. (14) Find all local minima, local maxima, and saddle points of the function given below. You should evaluate the function at each critical point.

\[f(x, y) = x^3 + y^3 - 3xy + 15. \]

The domain is all of \(\mathbb{R}^2 \) (all real pairs).

Critical points

\[f_x = 3x^2 - 3y = 0 \quad (1) \]

\[f_y = 3y^2 - 3x = 0 \quad (2) \]

(2) \(\Rightarrow \) \(x = y^2 \). Plugging into (1) gives

\[3(y^2)^2 - 3y = 0 \quad \Rightarrow \quad y^4 - y = 0 \quad y(y^3 - 1) = 0, \]

giving \(y = 0, 1 \), and hence \(x = 0, 1 \). So the critical points are \((0, 0)\) and \((1, 1)\).

\[f_{xx} = 6x, \quad f_{yy} = 6y, \quad f_{xy} = -3; \quad \text{So} \]

\[H = f_{xx}f_{yy} - f_{xy}^2 = (6x)(6y) - (-3)^2 = 36xy - 9. \]

\[(0, 0) \]

\[H = 36(0)(0) - 9 = -9 < 0 \]

\(\Rightarrow \) \((0, 0)\) is a saddle point.

\[f(0, 0) = 15. \]

\((0, 0, 15)\) is a saddle point.

\[(1, 1) \]

\[H = 36(1)(1) - 9 = 27 > 0. \]

\[f_{xx} = 6(1) = 6 > 0. \quad \Rightarrow \text{\((1, 1)\) is a local minimum.} \]

\[f(1, 1) = (1)^3 + (1)^3 - 3(1)(1) + 15 = 14. \]

\((1, 1, 14)\) is a local minimum.