11.3/48 \(V = (x+y)^{-\frac{1}{2}} \) \\
\(V_x = \frac{1}{2} (x+y)^{-\frac{3}{2}} \), \(V_{xx} = \frac{1}{4} (x+y)^{-\frac{5}{2}} \).
\(V_y = \frac{1}{2} (x+y)^{-\frac{3}{2}} \), \(V_{yy} = \frac{1}{4} (x+y)^{-\frac{5}{2}} \).
\(V_{xy} = V_{yx} = \frac{1}{4} (x+y)^{-\frac{5}{2}} \).
\(\frac{1}{4} (x+y)^{-\frac{5}{2}} \).

11.4/5 \(z = y \cos(x-y) \), \((2,3,2) \).
\(z_x = -y \sin(x-y) \)
\(z_y = \cos(x-y) + y \sin(x-y) \).
\(z_x(2,3) = 0 \)
\(z_y(2,3) = 1 \).

So the plane is \(z = 2 + 0(x-2) + 1(y-2) \Rightarrow [z = y] \).

11.9 (12) \(f(x,y) = \frac{x}{y} \) is a rational function of \(x+y \), and is continuous on its domain. \(f_x = \frac{1}{y} \) and \(f_y = -\frac{x}{y^2} \) are continuous on their domains, which (for both) is \(y \neq 0 \). Therefore \(f_x \) and \(f_y \) both exist near \((6,3) \) and are continuous at \((6,3) \), so by Thm 18, p. 620, \(f \) is differentiable at \((6,3) \). \(f_x(6,3) = \frac{1}{3} \), \(f_y(6,3) = -\frac{2}{3} \), \(f(6,3) = 2 \).

So \([L(x,y) = 2 + \frac{1}{3}(x-6) - \frac{2}{3}(y-3)] \).