1. Find parametric equations for the line which is tangent to the curve \(\vec{r}(t) = (3t, t \ln(t), \sqrt{t}) \) at the point where \(t = 1 \).

2. Find an equation for the plane which is tangent to the surface \(x \sin(4y - 3z) - \frac{y^2}{x} = 6 \) at the point \((-1, \frac{3}{2}, 2)\).

3. Compute the directional derivative of \(f(x, y, z) = xe^{-x^2 - y^2} \) at the point \((1, 0, 2)\) in the direction of \(\vec{u} = (1, -1, 3) \). That is, compute \(D_{\vec{u}}f(1, 0, 2) \), where \(\vec{u} \) is a unit vector in the same direction as \(\vec{u} \). What would you change \(\vec{u} \) to in order to get the largest possible value of \(D_{\vec{u}}f(1, 0, 2) \)? What would this maximum value of \(D_{\vec{u}}f(1, 0, 2) \) be?

4. Given that \(w = xy^2z^3 + \sqrt{y} \), \(x = t^2 \), \(y = \ln(t) + t \), and \(z = \frac{1}{t^2} \), use the chain rule to find \(\frac{dw}{dt} \).

5. The function \(f(x, y) = y(x - 2)^3 + y^2 - y \), has exactly two critical points. One is a saddle point at \((x, y) = (2, \frac{1}{4})\). Find the other critical point, and classify it (as local max, local min, or saddle).

6. Compute \(\int \vec{F} \cdot d\vec{r} \), where: a) \(\vec{F}(x, y) = (2y, 1 - x) \) and \(C \) is the piece of the curve \(y = x^2 \) from \((-1, 1)\) to \((2, 4)\); b) \(\vec{F}(x, y) = (x - y, 2y - x) \) and \(C \) is given by \(\vec{r}(t) = (t, 5 - t^2), \ 0 \leq t \leq 2 \).

7. Compute the volume of the solid which lies above the disc \(x^2 + y^2 \leq 1 \) and below the surface \(z = 1 - (x^2 + y^2)^{1/4} \).

8. Let \(S \) be the piece of the surface \(z = 4 - x^2 - y \) which lies in the first octant, and let \(E \) be the solid region bounded by \(S \) and the coordinate planes. Sketch \(S \), and then set up iterated integrals (limits and all) for calculating the area of \(S \) and the volume of \(E \).

9. a) Evaluate the triple integral \(\int_0^1 \int_0^1 \int_0^{2-x^2} 1 \, dz \, dy \, dx \). b) Give a complete description and/or sketch of the region whose volume is represented by the integral in part(a).

10. Evaluate the triple integral \(\iiint_E z \, dV \), where \(E \) is the region above \(z = \sqrt{x^2 + y^2} \) and below \(x^2 + y^2 + z^2 = 9 \).

11. Let the region \(R \) be the region in the \(xy \) plane bounded by \(y = x, y = 3x, xy = 1 \) and \(xy = 2 \). Sketch \(R \), and then use the transformation \(u = \frac{y}{x}, \ v = xy \) to evaluate \(\iint_R x \, dA \).

12. In each case, determine whether the given field is conservative. If it is, find a potential function \(f \) such that \(\vec{F} = \nabla f \).
 a) \(\vec{F}(x, y, z) = (2xz, 2x - y, x^2 + z) \)
 b) \(\vec{F}(x, y, z) = (2xz, -y, x^2 + z) \)

13. For each given field and curve, use Greene's Theorem to help you compute \(\oint_C \vec{F} \cdot d\vec{r} \).
 a) \(\vec{F}(x, y) = (-xy, x^2) \), \(C \) is as shown:

 b) \(\vec{F}(x, y) = (\sin(x) - y^2, x + e^{-y}) \), \(C \) is as shown:

14. Refering to the illustration below, do the following two problems:

 Use the Divergence Theorem to help you compute \(\iiint_E \vec{F} \cdot d\vec{S} \), where \(\vec{F}(x, y, z) = (x^2, y, 2z) \) and \(S \) is the surface of the solid \(E \) sketched below.

 Use Stokes' Theorem to help you compute \(\oint_C \vec{F} \cdot d\vec{r} \), where \(\vec{F}(x, y, z) = (yz, xz, 2xy) \) and \(C \) is the curve shown below. Note that \(C \) lies in the surface \(z = \sqrt{y} \).

 \(E \) is the solid region lying below the surface \(z = \sqrt{y} \) and above the rectangle \([0, 2] \times [0, 4] \).

 \(S \) is the entire surface of \(E \).

 \(C \) is the closed curve which bounds the top surface.
Fundamental Theorem for Line Integrals:

Let C be a piecewise-smooth, continuous curve with initial point \vec{x}_0 and final point \vec{x}_1. If ∇f is continuous on C, then

$$\int_C \nabla f \cdot d\vec{r} = f(\vec{x}_1) - f(\vec{x}_0).$$

Greene's Theorem:

Let C be a piecewise-smooth, positively-oriented, simple curve in the plane and let D be the region bounded by C. If $\vec{F} = (P, Q)$ is continuously differentiable on an open region containing D, then

$$\int_C \vec{F} \cdot d\vec{r} = \iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA.$$

Stokes' Theorem:

Let S be a piecewise-smooth, oriented surface in space and let the boundary of S be a piecewise-smooth simple closed curve C, with orientation consistent (by the right-hand rule) with that of S. If $\vec{F} = (P, Q, R)$ is continuously differentiable on an open region which contains S, then

$$\int_C \vec{F} \cdot d\vec{r} = \iint_S \text{curl} \vec{F} \cdot d\vec{S}.$$

Divergence Theorem:

Let S be a piecewise-smooth, closed surface in space, oriented outward. Let E be the solid region enclosed by S. If $\vec{F} = (P, Q, R)$ is continuously differentiable on an open region which contains E, then

$$\iint_S \vec{F} \cdot d\vec{S} = \iiint_E \text{div} \vec{F} \, dV.$$

For a parameterized curve $\vec{r}(t) = (x(t), y(t), z(t))$, $a \leq t \leq b$:

- $\vec{r}'(t) = \text{tangent vector}$
- $\vec{T} = \frac{\vec{r}'(t)}{|\vec{r}'(t)|} = \text{unit tangent vector}$
- $s(t) = \int_a^t |\vec{r}'(t)| \, dt = \text{arc length function}$

$$ds = |\vec{r}'(t)| \, dt \quad \quad d\vec{r} = \vec{T} \, ds = (dx, dy, dz) = \vec{r}'(t) \, dt = (x'(t), y'(t), z'(t)) \, dt.$$

For a surface S:

$$d\vec{S} = \vec{n} \, dS,$$

where $\vec{n}(x, y, z)$ is a unit normal vector to S at (x, y, z), and dS is a differential area element of S at (x, y, z).

If $S = \{(x, y, z) \mid z = f(x, y), \ (x, y) \in D\}$, then $dS = \sqrt{f_x^2 + f_y^2 + 1} \, dA$.

Polar/cylindrical coordinates:

- $x = r \cos(\theta)$
- $y = r \sin(\theta)$
- $z = z$
- $r^2 = x^2 + y^2$
- $\tan(\theta) = y/x$
- $dA = r \, dr \, d\theta$
- $dV = r \, dr \, d\theta \, dz$

Spherical coordinates:

- $x = \rho \sin(\phi) \cos(\theta)$
- $y = \rho \sin(\phi) \sin(\theta)$
- $z = \rho \cos(\phi)$
- $\rho^2 = x^2 + y^2 + z^2$
- $\rho^2 + z^2 = r^2 + z^2$
- $dV = \rho^2 \sin(\phi) \, d\rho \, d\theta \, d\phi$

Jacobian:

$$\frac{\partial(x, y)}{\partial(u, v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix}$$

div \vec{F}:

$$\text{div} \vec{F} = \nabla \cdot \vec{F}$$

curl \vec{F}:

$$\text{curl} \vec{F} = \nabla \times \vec{F}$$
1. \(\mathbf{r}'(t) = \langle 3, 1 \rangle + \langle 1, 1 \rangle t \), so \(\mathbf{r}'(1) = \langle 3, 1 \rangle + 1 \). Also \(\mathbf{r}'(1) = \langle 3, 1 \rangle \), so line is

\[
\begin{align*}
 x &= 3 + 3t \\
 y &= 0 + t \\
 z &= 1 + \frac{t}{2}
\end{align*}
\]

2. \(x \sin(4y-3z) - \frac{y^2}{x} = 6 \). This is a level surface of \(f \), so normal vector is given by

\[
\nabla f = \langle \sin(4y-3z) + \frac{4y^2}{x^2}, 4x \cos(4y-3z) - \frac{2}{x}, -3x \cos(4y-3z) - \frac{2y^2}{x} \rangle,
\]

and \(\nabla f (1,3,2) = \langle 6, 6, 0, 9 \rangle \), so plane is \(6(x-1) + 6(y-3) + 9(z-2) = 0 \), or \(2x + 3y + 3z = 14 \).

3. \(\nabla f = \langle -2x e^{-x^2-y^2}, -2y e^{-x^2-y^2}, e^{-x^2-y^2} \rangle = \langle -2x, -2y, 1 \rangle \), \(\nabla f(1,0) = \langle -2, 0, 1 \rangle \).

4. To maximize \(\Delta_t f(1,0) \), choose \(\mathbf{u} = \frac{\nabla f(1,0)}{\| \nabla f(1,0) \|} = \frac{\langle -2, 0, 1 \rangle}{\sqrt{5}} \). Max \(\Delta_t f(1,0) = |\nabla f(1,0)| = \sqrt{5} \).

5. \(f_x = 3y(x-2)^2 \) \(f_y = (x-2)^2 + y-1 \) \(f_z = \begin{cases} 0 & y = 0 \text{ or } x = 2 \\ x-2 & x > 2 \end{cases} \), \(f = \begin{cases} 3y(x-2)^2 & y = 0 \text{ or } x < 2 \\ (x-2)^2 + y-1 & x > 2 \end{cases} \)

So critical pts. are \((2,1,3)\). Test for this is \(D(\text{two variables}) = f_{xx} f_{yy} - f_{xy}^2 = [6y(x-2)]^2 - [3x(x-2)]^2 \).

So: \(D(2,1) = 0 \), critical pt. \((2,1,3)\) is a saddle.

6. One way: \(\mathbf{r}'(t) = \langle 1, -1, 2 \rangle dt \), so get \(\int_0^2 \langle t - (t-5) + (t-2) \rangle dt = \int_0^2 (t^2 - 3t^2 - 7t + 5) dt = [\frac{t^3}{3} - \frac{3t^2}{2} - \frac{7t}{2}]_0^2 = -24 \).

Other way: \(x - y - z = 0 \), we have \(\int_0^2 f = \frac{1}{2} \left(\int_0^2 x^2 + y^2 \right) \) initial pt.

7. In cylindrical coords, \(x = r \cos \theta \), \(y = r \sin \theta \), \(z = z \), surface is \(z = 1 - \sqrt{r} \).

So volume = \(\int_0^{2\pi} \int_0^1 (1 - \sqrt{r}) r dr d\theta = 2\pi \int_0^1 \left(\frac{r^2}{2} - \frac{r^{3/2}}{3} \right) \).

8. \(z = 0 \Rightarrow y = 4x^2 \), \(x = 0 \Rightarrow z = 4y, \ y = 0 \Rightarrow z = 4x^2 => dS = \sqrt{\frac{x^2}{y^2} + \frac{y^2}{z^2} + 1} \).

Area = \(\int_0^1 \int_0^2 \sqrt{x^2 + y^2 + z^2} \) \(dA = 2\pi \int_0^1 \left(2 - x^2 + x^2 \right) dx = 14 \).

9. a) Inner: \(\int_0^1 xy dz = \left(\frac{1}{2} \right) \left(0^2 \right) = 0 \);

Middle: \(\int_0^1 (2x^2 - x^3) dy = \left(2x^2 - x^3 \right) \left(-2x^2 + x^3 \right) = \left(2 - 2x + x^2 \right) \)

Outer: \(\int_0^1 (2x^2 - x^3) dy = \left(\frac{11}{12} \right) \).

b) \(0 \leq x \leq 1, \ 0 \leq y \leq 1 - x \):

\[
\int_0^1 \int_0^{1-x} dy \int_0^x dz = \int_0^1 \left(1 - x \right) dx = \frac{1}{2} \cdot \frac{11}{12} = \frac{11}{24}.
\]

10. Using spherical coords:

\[
\int_{\rho=0}^{\rho=1} \int_{\phi=0}^{\phi=\pi} \int_{\theta=0}^{\theta=2\pi} \rho^2 \sin \theta d\theta d\rho d\phi = 2\pi \left(\frac{9}{4} \right) \int_0^\pi \sin \phi d\phi = \frac{81}{8} \pi.
\]
\[\begin{aligned}
&\begin{aligned}
&\nabla \times \mathbf{F} = \begin{vmatrix}
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
2x & z & 2x \\
x^2 & y & x^2 + z
\end{vmatrix} = (0, 2x \cdot 2x, 2) = \mathbf{0}, \text{ so not conservative.}
\end{aligned}

&\begin{aligned}
&\nabla \times \mathbf{F} = \begin{vmatrix}
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
0 & 2x & 2z \\
x^2 & y & x^2 + z
\end{vmatrix} = (0, 2x \cdot 2x, 0), \text{ so conservative.}
\end{aligned}
\end{aligned} \]

\[\begin{aligned}
&\begin{aligned}
&\nabla \cdot \mathbf{F} = \int_{C} \frac{1}{2\pi} \sqrt{1 + \left(\frac{x}{y} \right)^2} d\theta = \int_{0}^{\pi} \frac{1}{2\pi} \sqrt{1 + \left(\frac{x}{y} \right)^2} d\theta = \frac{1}{2\pi} \left[\frac{2\pi}{3} \right] = \frac{1}{3}.
\end{aligned}
\end{aligned} \]

\[\begin{aligned}
&\text{First case:} \quad \iint_{E} \mathbf{F} \cdot d\mathbf{S} = \iint_{E} \nabla \cdot \mathbf{F} \, dV = \iiint_{E} \left(\frac{x}{y} + 1 \right) \, dV = \iiint_{E} \left(x^2 + 1 \right) \, dV = \iiint_{E} \left(x^2 + 1 \right) \, dV = \frac{4}{3} \cdot 10 = \frac{40}{3}.
\end{aligned} \]

\[\begin{aligned}
&\text{Second case:} \quad \iint_{E} \mathbf{F} \cdot d\mathbf{S} = \iiint_{E} \left(\nabla \cdot \mathbf{F} \right) \, dV = \iiint_{E} \left(\frac{1}{y} \right) \, dV = \iiint_{E} \left(\frac{1}{y} \right) \, dV = \frac{1}{3} \cdot \frac{16}{3} = \frac{16}{9}.
\end{aligned} \]