Inventory Model Simulation

- **Assumptions:**
 a) customers arrive as Poisson(\(\lambda\)) for purchase of a product;
 b) unit price \(r\), with amount demanded \(D \sim G\), some distribution \(G\);
 c) when inventory \(x < s\), additional product is ordered to increase to some level \(S > s\), with time lag \(L\) for delivery;
 d) shop has cost function \(c(y)\) for \(y\) units, new orders arrive at times with some distribution \(G\);
 e) inventory holding cost is \(h\) per unit per unit time;
 f) if new customer demand \(w > y\) supply, excess demand is lost;
 g) goal of simulation is to determine profit at time \(T\).

- **Variables:**
 - **Time** \(t\);
 - **System State** \((x, y)\) (inventory \(x\), orders \(y\));
 - **Counters** total ordering cost \(C\), holding cost \(H\), revenue \(R\);
 - **Events** \(t_0\) for next arrival, \(t_1\) next delivery.

- **Typical Output** is average profit \((R - C - H)/T\);
 several runs provide \(E[(R - C - H)/T]\), which could be computed with different \((s, S)\)s to determine optimal ordering strategy.
INVENTORY MODEL CONTINUED

- Inventory Model Simulation Algorithm:
 given constants r, h, s, S, L, and $c(y), G(x)$;
 Initialize: $x = t = H = R = C = 0$,
 $t_0 = -\ln(\text{Uni}(0, 1))/\lambda$, $t_1 = L$, $y = S$.
 While $t \leq T$, update the system state using two cases:

 - **If** $t_0 < t_1$ (new customer before next order arrives)
 reset $H = H + (t_0 - t)hx$, $t = t_0$;
 generate $D \sim G$, set $w = \min(D, x)$;
 reset $R = R + wr$, $x = x - w$;
 if $x < s$ and $y = 0$, reset $y = S - x$, and $t_1 = t + L$;
 reset $t_0 = t - \ln(\text{Uni}(0, 1))/\lambda$.

 - **Else** (new order arrives before next customer)
 reset $H = H + (t_1 - t)hx$, $C = C + c(y)$, $t = t_1$;
 reset $x = x + y$, $y = 0$, $t_1 = \infty$.

 - **EndIf**

EndWhile

Output average profit $(R - C - H)/T$
INSURANCE RISK MODEL

Insurance Risk Model Simulation

- Assumptions:
 a) policyholders generate claims as Poisson(\(\lambda\)) process;
 b) amount of each claim \(C \sim F\), for some distribution \(F\);
 c) new customers enroll according to Poisson(\(\nu\)) process;
 d) policyholders remain enrolled for \(\text{Exp}(\mu)\) time;
 e) customers pay for policies at rate \(c\);
 f) initial capital \(a_0\) and \(n_0\) policyholders;
 g) goal of simulation is to check if capital \(> 0\) for all \(t \leq T\).

- Variables: **Time** \(t\);
 System State \((n, a)\) (policyholders \(n\), capital \(a\));
 Events new and lost policyholders, claims;
 Event List \(t_E\), the time for next event.

- Analysis: inter-event times are all independent Exponential; the minimum of independent Exponentials is Exponential; given \(n\), the next event time is \(\text{Exp}(\nu + n\mu + n\lambda)\); (new policy, lost policy, new claims) have probabilities \((\nu, n\mu, n\lambda)/(\nu + n\mu + n\lambda)\).

- Output \(I = 1\) if capital \(> 0\), \(\forall t \leq T\), otherwise \(I = 0\).
INSURANCE RISK MODEL CONTINUED

• Insurance Risk Model Simulation Algorithm:

 Initialize: \(t = 0, \ n = n_0, \ a = a_0, \ I = 1, \)
 \[t_E = -\ln(\text{Uni}(0, 1))/(\nu + n(\mu + \lambda)) \].

 While \(t_E \leq T \) and \(I = 1 \), update the system using:
 reset \(a = a + nc(t_E - t) \), \(t = t_E \);
 generate \(J \) with pmf \((\nu, n\mu, n\lambda)/(\nu + n\mu + n\lambda) \);
 if \(J = 1 \), reset \(n = n + 1 \) (new policy)
 elseif \(J = 2 \), reset \(n = n - 1 \) (lost policy)
 else (new claim)
 generate \(C \sim F \);
 if \(C > a \), set \(I = 0 \); otherwise reset \(a = a - C \);
 endif
 \[t_E = t - \ln(\text{Uni}(0, 1))/(\nu + n(\mu + \lambda)) \].

 EndWhile

• Repeated runs provide
 a) \(E[I] \), the probability of capital > 0;
 b) other data which could be collected, e.g. average \(n \)'s, \(a \)'s.
Example: car insurance company with T in months,
\[F \sim 4000 + 1000 \times \text{Normal}(0, 1), \quad c = 100, \quad a_0 = \$100000, \]
\[n_0 = 1000 \text{ customers}, \quad \lambda = 10, \quad \nu = .005, \quad \mu = .01, \]
so initially \[(\nu, n\mu, n\lambda) / (\nu + n\mu + n\lambda) = (.4 .4 .2). \]
Matlab
\[
[I \ a \ t \ n]=\text{insrsk}(60,1000,100000,.005,10,.01,100);
disp([I \ a \ t \ n])
\]
\[1 \ 4.7792e+06 \ 59.978 \ 1001 \]
for \(i = 1 \) : \(100 \)
\[
[F(i) \ a(i)]=\text{insrsk}(60,1000,100000,.005,10,.01,100);
end, \text{disp}([\text{mean}(F) \ \text{mean}(a)])
\]
\[1 \ 4.8895e+06 \]
function \([I \ a \ t \ n] = \text{insrsk}(T,ni,ai,la,nu,\mu,c)\)
% Insurance Risk Model, with
% initial customers \(ni \), initial capital \(ai \),
% claim rate \(la \), new customer signup rate \(nu \),
% customer loss rate \(\mu \), payment rate \(c \).
%
t = 0; \ n = ni; \ a = ai; \ I = 1;
te = -\log(rand)/(\ nu + n*(\mu+la));
while te <= T & I == 1
\[a = a + n*c*(\ te - t); \ t = te; \ U = \text{rand}; \]
if \(U < \ nu / (nu+n*(\mu+la)) \), \(n = n + 1 \);
elseif \(U > (n*la+nu)/(nu+n*(\mu+la)) \), \(n = n - 1 \);
else, \(C = F; \ a = a - C; \) if \(a < 0 \), \(I = 0 \); end
end, \(te = t - \log(rand)/(\ nu + n*(\mu+la)) \);
end
function \(C = F \), \(C = 4000 + 1000*\text{randn}; \) % Normal
MACHINE REPAIR MODEL

Machine Repair Model Simulation

• Assumptions:
 a) system needs \(n \) working machines;
 b) machines fail independently after time \(X \sim F \), some \(F \);
 c) broken machine immediately replaced and sent for repair;
 d) one-person repair facility repairs machines in sequence;
 e) repaired machines become spares \(s \);
 d) repair times \(R \sim G \), for some \(G \);
 g) system crashes if machine fails with no spares available;
 h) assume initially \(n + s \) total machines;
 i) goal of simulation is determine expected failure time \(E[T] \).

• Variables:
 Time \(t \);
 System State \(r\) # of machines in repair;
 Events \(t_1 \leq t_2 \leq \cdots \leq t_n \) failure times,
 and \(t^* \) time for next completed repair.

• Typical Output is crash time \(T \); several runs provide \(E[T] \).
MACHINE REPAIR MODEL CONTINUED

- Machine Repair Model Simulation Algorithm:
 given constants n, s, and $F(x)$, $G(x)$;

 Initialize: $t = r = 0$, $t^* = \infty$,
 generate $X_i \sim F$, $i = 1, 2, \ldots, n$ and sort to get t_i's;

 While $r < s + 1$, update the system state using two cases:
 - **If** $t_1 < t^*$ (a new failure)
 reset $t = t_1$, $r = r + 1$;
 if $r < s + 1$ generate $X \sim F$,
 and sort $t_2, t_3, \ldots, t_n, t + X$;
 if $r = 1$, generate $R \sim G$, and reset $t^* = t + R$.
 - **Else** (a completed repair)
 reset $t = t^*$, $r = r - 1$;
 if $r > 0$, generate $R \sim G$, and reset $t^* = t + R$;
 otherwise set $t^* = \infty$.

 - **EndIf**

 EndWhile

 Output crash time $T = t$.

- Example: $n = 5$, $s = 4$, $F = 1 - e^{-2x}$, $G = 1 - e^{-5x}$.