POISSON PROCESS GENERATION

Homogeneous Poisson Processes with rate λ.

- Recall: interarrival times X_i are exponential RVs with rate λ:
 - exponential pdf $f(x) = \lambda e^{-\lambda x}$; for $x \in [0, \infty)$,
 - with exponential cdf $F(x) = 1 - e^{-\lambda x}$.

 So $X_i = -\ln(U_i)/\lambda$, $U_i \sim \text{Uni}(0, 1)$; therefore

 RV $T_j = \sum_{i=1}^{j} X_i =$ the time for j^{th} event.

- Algorithm A, to generate all events in $(0,T)$:
 1) initialize $t = -\ln(U_0)/\lambda$, $n = 0$;
 2) while $t < T$, $n = n + 1$, $S_n = t$, $t = t - \ln(U_n)/\lambda$ end.

 Output n is # of events in $(0,T)$, and event times S_1, \ldots, S_n.

- Example:
 a) in Text Problem 5.24, buses arrive at a sporting event according to a Poisson process with rate 5 per hour; need to simulate bus arrivals over one hour period.

b) Example Matlab for $\lambda = 3$, $T = 2$

```matlab
T = -log(rand)/3; n = 0;
while T < 2, n = n+1;
    S(n) = T; T = T - log(rand)/3;
end, disp(n), disp(S(1:n))
```

7 .14181 .34328 .90224 1.0121 1.2183 1.4602 1.4988

For $K = 10000$ Matlab runs, $E[n] = 6.0205$.
POISSON GENERATION CONTINUED

• Alternate Method: uses discrete Poisson RV $N(T)$, where $N(T) =$ total # events in $(0, T)$, and $mean(N) = T\lambda$.

 Recall Poisson pmf: $p_j = e^{-\lambda T} \frac{(\lambda T)^j}{j!}, j = 0, 1, \ldots$.

 If $n = N(T)$, then TU_1, TU_2, \ldots, TU_n are event times, which can be sorted to get S_1, \ldots, S_n.

• Algorithm B, to generate all events in $(0, T)$:

 1) generate $N \sim \text{Poisson}(\lambda T)$;
 2) generate $U_1, U_2, \ldots, U_N \sim \text{Uni}(0, 1)$;
 3) sort TU_1, \ldots, TU_N to get arrival times S_1, \ldots, S_n.

 Output N is # of events in $(0, T)$, with event times S_1, \ldots, S_n.

Step 1)? use Poisson RV algorithm from text Chapter 4:

 1a) generate $U \sim \text{Uni}(0, 1)$;
 1b) set $N = 0$, $p = e^{-\lambda T}$, $F = p$;
 1c) while $U > F$, set $N = N + 1$
 set $p = p\lambda T/N$, $F = F + p$
 end;
 1d) Output N, the # of Poisson process events in time T.

• Example: for $\lambda = 3, T = 2$

 $U = \text{rand}$; $N = 0$; $p = \exp(-6)$; $F = p$
 while $U > F$, $N = N+1$; $p = 6*p/N$; $F = F+p$; end
 disp(N), disp(sort(2*rand(1,N)))

 6
 .042814 .21492 .66472 1.6707 1.7381 1.8899

 For $K = 10000$ Matlab runs, $E[N] = 5.9872$.
POISSON GENERATION CONTINUED

NonHomogeneous Processes with intensity function $\lambda(t)$ given.

- Interarrival times X_i are exponential RVs with rate $\lambda(t)$,
- "Thinning" Algorithm to generate all $S_i \in (0, T)$:
 1) initialize $t = 0$, $n = 0$, $\lambda = \max_{t \in [0,T]} \lambda(t)$;
 2) set $t = t - \ln(\text{Uni}(0, 1))/\lambda$, if $t > T$, stop;
 3) if $\text{Uni}(0, 1) \leq \lambda(t)/\lambda$, set $n = n + 1$, $S_n = t$;
 4) go to step 2.

Output n is # of events in $(0, T)$, and event times S_1, \ldots, S_n.

- Example, with $\lambda(t) = 6/(t + 2)$, $T = 2$; so $\lambda = 3$.
 t = -log(rand)/3; n = 0;
 while t < 2,
 if rand < 2/(t+2), n = n+1; S(n) = t; end
 t = t-log(rand)/3;
 end
 disp([n S(1:n)])
 4 .096807 .73985 1.3257 1.6074
POISSON GENERATION CONTINUED

• If $\lambda(t) \neq \lambda$, it is more efficient to subdivide $[0, T]$; use $0 = t_0 < t_1 < \ldots < t_{k+1} = T$, with $\lambda_j = \max_{t \in [t_{j-1}, t_j]}(\lambda(t))$.

• Subdivision Algorithm to generate all $S_i \in (0, T)$:
 1) initialize $t = 0$, $n = 0$, $j = 1$;
 2) $X = -\ln(U_{\text{uni}}(0, 1))/\lambda_j$;
 3) set $t = t + X$, if $t > t_j$, go to step 6;
 4) if $U_{\text{uni}}(0, 1) \leq \lambda(t)/\lambda_j$, set $n = n + 1$, $S_n = t$;
 5) go to step 2;
 6) if $j = k + 1$ stop;
 7) set $X = (X + t - t_j)\lambda_j/\lambda_{j+1}$, $t = t_j$, $j = j + 1$;
 8) goto step 3.

Output n is # of events in $(0, T)$, and event times S_1, \ldots, S_n.
• Alternate Method, generates S_n’s directly, using

$$F_s(x) = P\{s < x|s\} = 1 - P\{0 \text{ events in } (s, s + x)\} = 1 - e^{-\int_0^s \lambda(s+t)dt}.$$

Direct Algorithm: initialize $n = 0$, $S_0 = 0$;
while $S_n < T$, generate $X_{n+1} \sim F_{S_n}$;
set $S_{n+1} = S_n + X_{n+1}$, $n = n + 1$
end.
This method requires easily inverted F_{S_i}s.

• Example: with $\lambda(t) = b/(t + a)$. First compute

$$\int_0^x \lambda(s+y)dy = b \int_0^x (s+y+a)^{-1}dy = b(\ln(x+s+a) - \ln(s+a));$$

then

$$F_s(x) = 1 - e^{-b(\ln(x+s+a) - \ln(s+a))} = 1 - (\frac{s + a}{x + s + a})^b.$$

Then solve $U = F_s(X)$;

Use $F_s^{-1}(U) = (s + a)[U^{-1/b} - 1]$, so event times are

$$S_1 = F_0^{-1}(U_1), \quad S_{n+1} = S_n + F_{S_n}^{-1}(U_n), \quad i > 1.$$
POISSON GENERATION CONTINUED

• Example with $\lambda(t) = 6/(t + 2)$, $T = 2$; so

 $F_s^{-1}(U) = (s + 2)[U^{-1/6} - 1].$

Matlab

t = 2*(rand^(-1/6)-1); n = 0;
while t < 2, n = n+1;
 S(n) = t; t = t + (2+t)*(rand^(-1/6)-1);
end, disp([n S(1:n)])

5 .23931 .59698 .77515 1.1221 1.8968

Using $K = 100000$ runs, $E[n] \approx 4.1641$,
compared to $\int_0^2 \frac{6}{2+x} dx = 6 \ln(2) \approx 4.1589.$