LINE INTEGRALS

Line Integral Along a Curve: given a parameterized smooth curve \(C = \{ \mathbf{r}(t) \mid t \in [a, b] \} \) and \(f(\mathbf{r}) \) defined on \(C \);

- divide \(C \) into \(n \) subarcs with lengths \(\Delta s_1, \Delta s_2, \ldots, \Delta s_n \) and pick one point \(\mathbf{r}(t_i^*) \) from each subarc;
- definition: the **line integral of \(f \) along \(C \)** is
 \[
 \int_C f(\mathbf{r}) ds = \lim_{\max(\Delta s_i) \to 0} \sum_{i=1}^{n} f(\mathbf{r}(t_i^*)) \Delta s_i,
 \]
 a line integral with respect to arc length;
- formula: the line integral of \(f \) along \(C \) is
 \[
 \int_C f(\mathbf{r}) ds = \int_a^b f(\mathbf{r}(t)) |\mathbf{r}'(t)| dt.
 \]

Note: nonsmooth \(C \) could be split into smooth pieces.

- Application: suppose \(\rho(\mathbf{r}) \) is density for wire, then mass
 \[
 m = \int_C \rho(\mathbf{r}) ds = \int_a^b \rho(\mathbf{r}(t)) |\mathbf{r}'(t)| dt;
 \]
 then center of mass
 \[
 \bar{\mathbf{r}} = \frac{1}{m} \int_a^b \mathbf{r}(t) \rho(\mathbf{r}(t)) |\mathbf{r}'(t)| dt.
 \]
MORE LINE INTEGRALS

Componentwise Line Integrals: given a parameterized smooth curve $C = \{ \mathbf{r}(t) \mid t \in [a, b] \}$ and $f(\mathbf{r})$ for C;

- subdivide C using $a = t_0 < t_1 < \cdots < t_n = b$, let $\Delta r_{ij} = r_j(t_i) - r_j(t_{i-1})$, and pick $\mathbf{r}(t_i^*)$’s from subarcs;
- definition: the line integral of f along C with respect to r_j is
 \[
 \int_C f(\mathbf{r})dr_j = \lim_{\max(\Delta r_{ij}) \to 0} \sum_{i=1}^{n} f(\mathbf{r}(t_i^*))\Delta r_{ij};
 \]
- formula: line integral of f along C with respect to r_j
 \[
 \int_C f(\mathbf{r})dr_j = \int_a^b f(\mathbf{r}(t))r_j'(t) \, dt;
 \]
- note: if C is (straight)line from $\mathbf{r}(a)$ to $\mathbf{r}(b)$ use
 \[
 \mathbf{r}(t) = \mathbf{r}(a) + t(\mathbf{r}(b) - \mathbf{r}(a)), \quad t \in [0, 1];
 \]
- orientation sometimes matters: if $-C$ denotes curve from $\mathbf{r}(b)$ to $\mathbf{r}(a)$ (backwards along C)
 \[
 \int_{-C} f(\mathbf{r})dr_j = \int_a^b f(\mathbf{r}(t))r_j'(t) \, dt
 = - \int_a^b f(\mathbf{r}(t))r_j'(t) \, dt = - \int_C f(\mathbf{r})dr_j;
 \]
 but
 \[
 \int_{-C} f(\mathbf{r})ds = \int_C f(\mathbf{r})ds.
 \]
EVEN MORE LINE INTEGRALS

Vector Field Line Integrals: given
a parameterized smooth curve \(C = \{ r(t) \mid t \in [a, b] \} \)
and a vector field \(\mathbf{F}(r) = < P(r), Q(r), R(r) > \) for \(C \);

- subdivide \(C \) using \(a = t_0 < t_1 < \cdots < t_n = b \);
- if \(\mathbf{F} \) is a force field, then the work done (by \(\mathbf{F} \)) moving a particle from \(r(t_{i-1}) \) to \(r(t_i) \) along \(C \) is
 \[
 W_i \approx \mathbf{F}(r(t_i^*)) \cdot \mathbf{T}(r(t_i^*)) \Delta s_i,
 \]
 where \(\Delta s_i \) is arc length from \(r(t_{i-1}) \) to \(r(t_i) \) along \(C \),
 \(\mathbf{T}(r) \) is unit tangent vector to \(C \) at \(r \), and \(t_i^* \in [t_{i-1}, t_i] \);
- work done moving a particle from \(a \) to \(b \) along \(C \) is
 \[
 W = \lim_{\max(\Delta s_i) \to 0} \sum_{i=1}^{n} W_i = \int_{C} \mathbf{F}(r) \cdot \mathbf{T}(r) \, ds
 \]
 formula: for work done \(a \) to \(b \) along \(C \) is
 \[
 W = \int_{C} \mathbf{F}(r) \cdot \mathbf{T}(r) \, ds = \int_{a}^{b} \mathbf{F}(r(t)) \cdot \frac{r'(t)}{|r'(t)|} |r'(t)| \, dt
 \]
 \[
 = \int_{a}^{b} \mathbf{F}(r(t)) \cdot r'(t) \, dt;
 \]
- definition: the line integral of \(\mathbf{F} \) along \(C \) is
 \[
 \int_{C} \mathbf{F}(r) \cdot dr = \int_{a}^{b} \mathbf{F}(r(t)) \cdot r'(t) \, dt = \int_{C} \mathbf{F} \cdot \mathbf{T} \, ds.
 \]