PARTIAL DERIVATIVES

Notation and Terminology: given a function $f(x, y)$;

- partial derivative of f with respect to x is denoted by
 \[\frac{\partial f}{\partial x}(x, y) \equiv f_x(x, y) \equiv D_x f(x, y) \equiv f_1; \]

- partial derivative of f with respect to y is denoted by
 \[\frac{\partial f}{\partial y}(x, y) \equiv f_y(x, y) \equiv D_y f(x, y) \equiv f_2. \]

Definitions: given a function $f(x, y)$;

- definition for $f_x(x, y)$:
 \[f_x(x, y) = \lim_{h \to 0} \frac{f(x + h, y) - f(x, y)}{h}; \]

- definition for $f_y(x, y)$:
 \[f_y(x, y) = \lim_{h \to 0} \frac{f(x, y + h) - f(x, y)}{h}. \]

Determination of f_x and f_y:

- to find $f_x(x, y)$: keeping y constant, take x derivative;
- to find $f_y(x, y)$: keeping x constant, take y derivative.

Graphical Interpretation of f_x and f_y:

- $f_x(a, b)$ is slope of tangent line in x direction for the surface $z = f(x, y)$ at $f(a, b)$;
- $f_y(a, b)$ is slope of tangent line in y direction for the surface $z = f(x, y)$ at $f(a, b)$.
Applications to Implicit Differentiation

Functions of \(n > 2 \) Variables: given \(f(x) = f(x_1, \ldots, x_n) \)

- notation and terminology: the
 partial derivative of \(f \) with respect to \(x_i \) is denoted by
 \[
 \frac{\partial f}{\partial x_i}(x) \equiv f_{x_i}(x) \equiv D_{x_i}f(x) \equiv f_i(x);
 \]

 definition:
 \[
 f_{x_i}(x) = \lim_{h \to 0} \frac{f(x_1, \ldots, x_{i-1}, x_i + h, x_{i+1}, \ldots, x_n) - f(x)}{h}.
 \]

Higher Derivatives: given \(f(x, y) \) defined on a domain \(D \);

- notation: second partials are denoted by
 \[
 \frac{\partial^2 f}{\partial x^2}(x, y) \equiv \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) \equiv (f_x)_x \equiv f_{11};
 \]
 \[
 \frac{\partial^2 f}{\partial y \partial x}(x, y) \equiv \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) \equiv f_{xy} \equiv (f_x)_y \equiv f_{12};
 \]
 \[
 \frac{\partial^2 f}{\partial x \partial y}(x, y) \equiv \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) \equiv f_{yx} \equiv (f_y)_x \equiv f_{21};
 \]
 \[
 \frac{\partial^2 f}{\partial y^2}(x, y) \equiv \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) \equiv (f_y)_y \equiv f_{22}.
 \]

- similar notation for functions with \(> 2 \) variables.

- Clairaut’s Theorem: if \((a, b) \in D \), and
 \(f_{xy} \) and \(f_{yx} \) are both continuous on \(D \), then
 \[
 f_{xy}(a, b) = f_{yx}(a, b).
 \]

- Applications to Partial Differential Equations