1. Let \(\mathbf{r}(t) = \langle \cos(2t), \sin(2t), t \rangle \) represent the position of a particle.

 a) Find the velocity, speed and acceleration functions for the particle.

 b) Find the unit tangent vector \(\mathbf{T}(t) \).

2. Find the length of this curve:

 \(\mathbf{r}(t) = 4t^{3/2} \mathbf{i} + t^2 \mathbf{j} + 9t \mathbf{k} \), \(0 \leq t \leq 1 \).

3. For the function \(f(x, y) = \sqrt{9 - 9y^2} \), do the following:

 a) State and sketch the domain of \(f \).

 b) Sketch (and describe, if you think it will help) the graph of \(f \).

4. A particle starts at the origin with initial velocity vector \(\langle 3, -1, 1 \rangle \). Its acceleration is \(\mathbf{a}(t) = \langle 4t, -24t^2, -8t \rangle \).

 Find this particle’s position function.

5. Find all first order partial derivatives of the function \(f(x, y, z) = xyz \sin(y) \).

6. Sketch the plane curve represented by the vector-valued function \(\mathbf{r}(t) = 2 \cos(t) \mathbf{i} - 3 \sin(t) \mathbf{j} \).

Mark the curve with an arrow indicating the direction of increasing \(t \).

7. Given the following relations, use the chain rule to find expressions for \(\frac{\partial w}{\partial r} \) and \(\frac{\partial w}{\partial \theta} \).

\[
 w = xy + yz, \quad x = r \cos(\theta), \quad y = r \sin(\theta), \quad z = \theta.
\]

You may leave a mixture of \(x \)'s, \(y \)'s, \(z \)'s, \(r \)'s and \(\theta \)'s in your answer.

8. For the function/surface \(z = f(x, y) = \sqrt{4x^2 + y^2} \), draw a contour map of \(f \), showing level curves for \(z \)-levels of 0, 1, 2, 3, 4. Label each contour with its \(z \)-level.

9. For the function \(f(x, y) = \frac{x + y}{x - y} \), do the following:

 a) Find the linearization of \(f \) at the point \((2,1) \).

 b) Find the equation of the plane that is tangent to the graph of \(f \) at the point where \((x, y) = (1,2) \).

10. For the multivariable function \(f(x, y, z) = \frac{1}{x^2 + y^2 + z^2 - 1} \), do the following:

 a) Compute \(f(1,2,3) \).

 b) Describe the domain of \(f \).

 c) Describe the level surfaces of \(f \).

11. Show that \(\lim_{(x,y) \to (0,0)} \frac{2xy}{x^2 + 2y^2} \) does not exist.

12. Find the value of \(\lim_{(x,y) \to (2,2)} \frac{x^2 - y^2}{x - y} \), and discuss the continuity of the function \(f(x, y) = \frac{x^2 - y^2}{x - y} \).