1. (10) Let \(A = \begin{bmatrix} 2 & 0 & -4 & 2 & -1 & -4 \\ 1 & 0 & -2 & 1 & 2 & 1 \\ 3 & 1 & -4 & 1 & 1 & 3 \\ -2 & 0 & 4 & -2 & -3 & -1 \\ 1 & 0 & -2 & 1 & 1 & 2 \end{bmatrix} \). Then \(A \) row reduces to \(\begin{bmatrix} 1 & 0 & -2 & 1 & 0 & 0 \\ 0 & 1 & 2 & -2 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{bmatrix} \).

(a) Find a basis for \(\text{Col} \ A \).

(b) Find a basis for \(\text{Nul} \ A \).

(c) What is \(\dim \text{Nul} \ A \)? Explain.

(d) What is \(\text{rank} \ A \)? Explain.

2. (10) Find all values of \(h \) so that the set of vectors \(\left\{ \begin{bmatrix} 4 \\ 4 \\ 2 \\ h \end{bmatrix}, \begin{bmatrix} 2 \\ 2 \\ 6 \end{bmatrix} \right\} \) forms a basis for \(\mathbb{R}^3 \). Justify your answer.

3. (10) Let \(A = \begin{bmatrix} 1 & 3 & -2 & 0 \\ 0 & 1 & 2 & 0 \\ 2 & 0 & -2 & 2 \\ 1 & 3 & 4 & 0 \end{bmatrix} \). Find \(\det(A) \).
4. (10)

Let \(A = \begin{bmatrix} 4 & 1 & 2 \\ 0 & 4 & 0 \\ 2 & 1 & 4 \end{bmatrix} \).

(a) Find the characteristic polynomial of \(A \). You may leave your answer in factored form.
(b) Find the eigenvalues of \(A \). NOTE: The eigenvalues are integers between zero and ten.

5. (10)

Let \(B = \begin{bmatrix} 2 & 0 & 2 \\ 0 & 2 & 1 \\ 0 & 1 & 2 \\ 0 & 1 & 0 \end{bmatrix} \).

Find a basis for the eigenspace of \(B \) associated with the eigenvalue \(\lambda = 2 \).

6. (20) Answer each of the following questions with justification.

(a) If \(A \) is a 5 \(\times \) 6 matrix, can the columns of \(A \) form a basis for \(\mathbb{R}^5 \)?
(b) If \(A, B, \) and \(C \) are \(n \times n \) matrices, \(A \) is invertible, and \(AB = AC \), then must \(B = C \)?
(c) If \(\mathbf{x} \) is an eigenvector of the 4 \(\times \) 4 matrix \(A \) corresponding to the eigenvalue \(\lambda = 0 \), do the columns of \(A \) span \(\mathbb{R}^4 \)?
(d) If \(A \) is a 3 \(\times \) 4 matrix, what is the largest value of the rank of \(A \)? What is the largest value of the dimension of the null space of \(A \)?
(e) Let \(A \) be a 4 \(\times \) 4 matrix with \(\det(A) = 6 \), and the matrix \(B \) is formed from \(A \) by first interchanging Rows two and three, and then dividing Row one by 2. What is \(\det(B) \)?

7. (5) Construct a 3 \(\times \) 3 triangular matrix \(A \) so that the vector \(\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \) is in \(\text{Col}(A) \).

8. (5) Let \(A = \begin{bmatrix} 3 & 2 & -3 \\ 2 & 0 & 0 \\ 5 & -2 & -1 \end{bmatrix} \). Is \(\mathbf{x} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \) an eigenvector of \(A \)? Justify your answer.

9. (5) Let \(A \) and \(B \) be 3 \(\times \) 3 matrices such that \(\det(A) = 2 \) and \(\det(B) = -3 \). Find each of the following determinants, or indicate that the determinant cannot be found from the information given.

(a) \(\det(B^3) \)
(b) \(\det(3B) \)
(c) \(\det(B^{-1}AB) \)
(d) \(\det(A + B) \)
(e) \(\det(A^{-2}) \)

10. (5) Let \(\lambda \) be an eigenvalue of the \(n \times n \) matrix \(A \). Let \(B = A - \lambda I \). Show that \(B \) is not an invertible matrix.