On a Nonlinear Maxwell’s System in Quasi-Stationary Electromagnetic Fields

Hong-Ming Yin
April 2003
On a Nonlinear Maxwell’s System
in Quasi-stationary Electromagnetic Fields

Hong-Ming Yin\(^1\)
Department of Mathematics
Washington State University
Pullman, WA 99164 USA. Email: hyin@wsu.edu

Abstract: In this paper we study the motion of a magnetic field \(\mathbf{H} \) in a conductive medium \(\Omega \subset \mathbb{R}^3 \) under the influence of a system generator. By neglecting displacement currents, the magnetic field satisfies a nonlinear Maxwell’s system:

\[
\mathbf{H}_t + \nabla \times [\rho(x, t) \nabla \times \mathbf{H}] = 3D \, f(|\mathbf{H}|) \mathbf{H},
\]

where \(f(|\mathbf{H}|) \mathbf{H} \) represents the magnetic currents depending upon the strength of \(\mathbf{H} \). We prove that under appropriate initial and boundary conditions the system has a global solution and the solution is also unique. Moreover, we show that the solution \(\mathbf{H} \) will blow up in finite time if \(f(s) \) satisfies certain growth conditions. Finally, we generalize the results to the problem associated with a nonlinear boundary condition.

AMS Mathematics Subject Classifications: 35Q60

Key Words and Phrases: Nonlinear Maxwell’s Equations, Quasi-stationary field, global existence and uniqueness, finite-time blowup.

Remark: The reader may contact the author for the preprint.

\(^1\)The author is supported in part by a NSF grant, MDS-0102261