2.4 Polynomial and Rational Functions

Polynomial Functions

Given a linear function $f(x) = mx + b$, we can add a square term, and get a quadratic function $g(x) = ax^2 + f(x) = ax^2 + mx + b$. We can continue adding terms of higher degrees, e.g. we can add a cube term and get $h(x) = cx^3 + g(x) = cx^3 + ax^2 + mx + b$, and so on. $f(x)$, $g(x)$, and $h(x)$ are all special cases of a polynomial function.

Definition (Polynomial Function)

A polynomial function is a function that can be written in the form

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$$

for n a nonnegative integer, called the degree of the polynomial. The coefficients $a_n, a_{n-1}, \ldots, a_1, a_0$ are real numbers with $a_n \neq 0$.

Note that although $a_n \neq 0$, the remaining coefficients $a_{n-1}, a_{n-2}, \ldots, a_1, a_0$ can very well be 0.

Domain of Polynomial Function

The domain of a polynomial function is \mathbb{R}, the set of all real numbers.

The domain of $f(x) = x^n$ is \mathbb{R} regardless the value of n (any nonnegative integer), and so is the domain of $g(x) = ax^n$, where a is some real number. Clearly, if you add, say k, such functions with different degrees (n) the domain of the resulting function will still be \mathbb{R}.

Consider a function \(f(x) = (x - 1)(x - 2)(x - 3) \). It could be rewritten as

\[
\begin{align*}
 f(x) &= (x - 1)(x - 2)(x - 3) \\
 &= (x - 1)(x^2 - 2x - 3x + 6) \\
 &= (x - 1)(x^2 - 5x + 6) \\
 &= x^3 - 5x^2 + 6x - x^2 + 5x - 6 \\
 &= x^3 - 6x^2 + 11x - 6.
\end{align*}
\]

So, \(f(x) \) is a polynomial function of degree 3.

Question: How many \(y \) intercepts does \(f(x) \) have?

Answer: Only one, \(y = f(0) = -6 \). Any function can have at most one \(y \) intercept, otherwise it will not pass the vertical line test.

y Intercept of a Polynomial Function

If \(f(x) = a_nx^n + a_{n-1}x^{n-1} + \ldots + a_1x + a_0 \) is a polynomial function, it has exactly one \(y \) intercept \(y = a_0 \).

Question: How many \(x \) intercepts does \(f(x) \) have?

Answer: \(f(x) \) has 3 intercepts. \(0 = (x - 1)(x - 2)(x - 3) \implies x = 1 \) or \(x = 2 \) or \(x = 3 \).

x Intercept of a Polynomial Function

A polynomial of degree \(n \) can have, at most, \(n \) linear factors. Therefore, the graph of a polynomial function of positive degree \(n \) can intersect the \(x \) axis at most \(n \) times. The \(x \) intercepts of \(f(x) = a_nx^n + a_{n-1}x^{n-1} + \ldots + a_1x + a_0 \) could be found by solving \(a_nx^n + a_{n-1}x^{n-1} + \ldots + a_1x + a_0 = 0 \).
Consider a function $h(x) = (x^2 + 1)(x - 2)(x - 3)$.

\[
h(x) = (x^2 + 1)(x - 2)(x - 3) = (x^2 + 1)(x^2 - 2x - 3x + 6) = (x^2 + 1)(x^2 - 5x + 6) = x^4 - 5x^3 + 6x^2 + x^2 - 5x + 6 = x^4 - 5x^3 + 7x^2 - 5x + 6.
\]

$h(x)$ is a polynomial function of degree 4, but has just 2 x intercepts, because the equation $0 = (x^2 + 1)(x - 2)(x - 3)$ has just 2 roots (zeros), which are $x = 2$ and $x = 3$.

3
Note that $f(x) = x^3 - 6x^2 + 11x - 6$ has degree 3, which is an odd number. It starts negative, ends positive, and crosses the x axis odd number of times.

$h(x) = x^4 - 5x^3 + 7x^2 - 5x + 6$ has degree 4, which is an even number. It starts positive, ends positive, and cross the x axis even number of times.

Consider $m(x) = -f(x) = -(x^3 - 6x^2 + 11x - 6) = -x^3 + 6x^2 - 11x + 6$, and $n(x) = -g(x) = -(x^4 - 5x^3 + 7x^2 - 5x + 6) = -x^4 + 5x^3 - 7x^2 + 5x - 6$.

Definition (Leading Coefficient)
Given a polynomial function \(f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0 \), the coefficient \(a_n \) of the highest-degree term is called the leading coefficient of a polynomial function \(f(x) \).

Graph of a Polynomial Function
Given a polynomial function \(f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0 \):

(a) if \(a_n > 0 \) and \(n \) is odd, then the graph of \(f(x) \) starts negative, ends positive, and crosses the \(x \) axis odd number of times but at least once;

(b) if \(a_n < 0 \) and \(n \) is odd, then the graph of \(f(x) \) starts positive, ends negative, and crosses the \(x \) axis odd number of times but at least once;

(c) if \(a_n > 0 \) and \(n \) is even, then the graph of \(f(x) \) starts positive, ends positive, and crosses the \(x \) axis even number of times or does not cross it at all;

(d) if \(a_n < 0 \) and \(n \) is even, then the graph of \(f(x) \) starts negative, ends negative, and crosses the \(x \) axis even number of times or does not cross it at all.

Note: (c) is a reflection in the \(x \) axis of (a), and (d) is a reflection in the \(x \) axis of (b).

Also note that a polynomial function always either increases or decreases without bound as \(x \) goes to either negative or positive infinity.
Continuity and "Smoothness" of Polynomial Function

Consider $f(x) = \frac{2|x|}{x}$. $f(x)$ has a discontinuous break at $x = 0$.
Consider \(g(x) = |x| - 2 \). \(g(x) \) is continuous, but not smooth due to a sharp corner at \((0, -2)\).

Consider \(h(x) = \frac{2}{x - 1} \). \(h(x) \) has a discontinuous break at \(x = 1 \).

Graph of a Polynomial Function

The graph of a polynomial function is **continuous**, with no holes or breaks. That is, the graph can be drawn without removing a pen from the paper. Also, the graph of a polynomial is "**smooth**", i.e. has no sharp corners.
Rational Functions

Just as rational numbers are defined in terms of quotients of integers, rational functions are defined in terms of quotients of polynomials.

Definition (Rational Function)

A **rational function** is any function that can be written in the form

\[f(x) = \frac{n(x)}{d(x)}, \quad d(x) \neq 0 \]

where \(n(x) \) and \(d(x) \) are polynomials.

For example,

\[f(x) = \frac{1}{x}, \quad g(x) = \frac{x - 2}{x^2 - x - 6}, \quad h(x) = \frac{x^{13} - 8}{x^5} \]

\[p(x) = x^4 - 5x^3 + 7x^2, \quad q(x) = 123, \quad r(x) = 0 \]

are all rational functions.

If \(n(x) \) and \(d(x) \) are polynomials, then they both have domain \(\mathbb{R} \). However,

Domain of a Rational Function

If \(f(x) = \frac{n(x)}{d(x)} \) is a rational function, then its domain is the set of all real numbers such that \(d(x) \neq 0 \).
Example 1
Find the domain of \(f(x) = \frac{x^2 + 1}{x^2 - 7x + 10} \)
Vertical and Horizontal Asymptotes

Recall that a polynomial function is always continuous and "smooth". It is also true that if \(x \) increases or decreases without bound, then function also increases or decreases without bound. However, this may not be true for a rational function. Also, a rational function may not have a \(y \) intercept.

Consider a rational function \(f(x) = \frac{x-3}{x-2} \). Its domain \((-\infty, 2] \cup [2, \infty)\), or all real numbers except for \(x = 2 \),

<table>
<thead>
<tr>
<th>(x)</th>
<th>(f(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>(\frac{1.5-3}{1.5-2} = -1.5)</td>
</tr>
<tr>
<td>1.75</td>
<td>(\frac{1.75-3}{1.75-2} = -1.25)</td>
</tr>
<tr>
<td>1.9</td>
<td>(\frac{1.9-3}{1.9-2} = -1.1)</td>
</tr>
<tr>
<td>1.95</td>
<td>(\frac{1.95-3}{1.95-2} = -1.05)</td>
</tr>
<tr>
<td>1.99</td>
<td>(\frac{1.99-3}{1.99-2} = -1.01)</td>
</tr>
<tr>
<td>1.999</td>
<td>(\frac{1.999-3}{1.999-2} = -1.001)</td>
</tr>
<tr>
<td>1.9999</td>
<td>(\frac{1.9999-3}{1.9999-2} = -1.0001)</td>
</tr>
<tr>
<td>1.99999</td>
<td>(\frac{1.99999-3}{1.99999-2} = -1.00001)</td>
</tr>
<tr>
<td>2</td>
<td>undefined</td>
</tr>
<tr>
<td>2.00001</td>
<td>(\frac{2.00001-3}{2.00001-2} = -0.999999)</td>
</tr>
<tr>
<td>2.0001</td>
<td>(\frac{2.0001-3}{2.0001-2} = -0.999999)</td>
</tr>
<tr>
<td>2.001</td>
<td>(\frac{2.001-3}{2.001-2} = -0.999999)</td>
</tr>
<tr>
<td>2.01</td>
<td>(\frac{2.01-3}{2.01-2} = -0.999999)</td>
</tr>
<tr>
<td>2.05</td>
<td>(\frac{2.05-3}{2.05-2} = -0.999999)</td>
</tr>
<tr>
<td>2.1</td>
<td>(\frac{2.1-3}{2.1-2} = -0.999999)</td>
</tr>
<tr>
<td>2.25</td>
<td>(\frac{2.25-3}{2.25-2} = -0.999999)</td>
</tr>
</tbody>
</table>
The graph of \(f(x) \) gets closer to the line \(x = 2 \) as \(x \) gets closer to 2. Line \(x = 2 \) is a vertical asymptote for \(f(x) \).

The graph of \(f(x) \) gets closer to the line \(y = 1 \) as \(x \) increases or decreases without bound. The line \(y = 1 \) is a horizontal asymptote for \(f(x) \).
Definition (Vertical Asymptote)
A vertical line \(x = a \) is called a vertical asymptote for a function \(f(x) \) if the graph of \(f(x) \) gets closer to the line \(x = a \) as \(x \) gets closer to \(a \).

Note: the number of vertical asymptotes of a rational function \(f(x) = \frac{n(x)}{d(x)} \) is at most equal to the degree of \(d(x) \).

Definition (Horizontal Asymptote)
A horizontal line \(y = b \) is called a horizontal asymptote for a function \(f(x) \) if the graph of \(f(x) \) gets closer to the line \(y = b \) as \(x \) gets increases or decreases without bound.

Note: a rational function has at most one horizontal asymptote. Moreover, the graph of a rational function approaches the horizontal asymptote (when one exists) both as \(x \) increases and decreases without bound.

\[
f(x) = \frac{8}{x^2 - 4} = \frac{8}{(x-2)(x+2)}
\]

\[
f(x) = x + \frac{1}{x} = \frac{x^2 + 1}{x}
\]
Example 2
Given the rational function \(f(x) = \frac{3x+3}{x^2-9}, \)

(a) Find the domain.

(b) Find the \(x \) and \(y \) intercepts.

(c) Find the equations of all vertical asymptotes.

(d) If there is a horizontal asymptote, find its equation.

(e) Using the information from parts (a)-(d) and additional points as necessary, sketch a graph of \(f \) for \(-10 \leq x \leq 10\).
Consider the rational function \(g(x) = \frac{3x^2 - 3x - 36}{x^3 - 4x^2 - 9x + 36} \).
Example 3

Find the vertical and horizontal asymptotes of the rational function

\[f(x) = \frac{x^3 - 4x}{x^2 + 5x} . \]
Applications

Example 4 (Employee Training)
A company that manufactures computers has established that, on the average, a new employee can assemble \(N(t) \) components per day after \(t \) days of on-the-job training, as given by

\[
N(t) = \frac{25t + 5}{t + 5}, \quad t \geq 0
\]

Sketch a graph of \(N \), \(0 \leq t \leq 100 \), including any vertical or horizontal asymptotes. What does \(N(t) \) approach as \(t \) increases without bound?