Semimonotone Matrices

Megan Wendler

May 27, 2018
Table of contents

1 Introduction
 - The definition of semimonotone & an example
 - Some observations and previous results
 - Questions

2 Some Results
 - What kinds of matrices are semimonotone?
 - Properties of semimonotone matrices

3 Conjectures

4 Future Directions
1 Introduction
 - The definition of semimonotone & an example
 - Some observations and previous results
 - Questions

2 Some Results
 - What kinds of matrices are semimonotone?
 - Properties of semimonotone matrices

3 Conjectures

4 Future Directions
A matrix $A \in M_n(\mathbb{R})$ is **semimonotone** if

$$0 \neq x \succeq 0 \text{ where } x \in \mathbb{R}^n \quad \Rightarrow \quad x_k > 0 \text{ and } (Ax)_k \geq 0 \text{ for some } k$$

A matrix $A \in M_n(\mathbb{R})$ is called **strictly semimonotone** if $(Ax)_k \geq 0$ is replaced with $(Ax)_k > 0$ in the above definition.
The Definition of Semimonotone & Strictly Semimonotone

Definition

A matrix $A \in M_n(\mathbb{R})$ is **semimonotone** if

$$0 \neq x \geq 0 \text{ where } x \in \mathbb{R}^n \Rightarrow x_k > 0 \text{ and } (Ax)_k \geq 0 \text{ for some } k$$

Definition

A matrix $A \in M_n(\mathbb{R})$ is called **strictly semimonotone** if $(Ax)_k \geq 0$ is replaced with $(Ax)_k > 0$ in the above definition.
Example

Let \(A = \begin{bmatrix} 2 & -1 \\ -2 & 3 \end{bmatrix} \).

Clearly, if \(x_1 = 0 \), then we must have that \(x_2 > 0 \) and we get that \((Ax)_2 = 3x_2 > 0\).

Similarly, if \(x_2 = 0 \), then we must have that \(x_1 > 0 \) and we get that \((Ax)_1 = 2x_1 > 0\).

Now suppose \(x_1, x_2 > 0 \). In this case, \(Ax = \begin{bmatrix} 2x_1 - x_2 - 2x_1 + 3x_2 \end{bmatrix} \).

Suppose \(Ax < 0 \). Then \(x_2 > 2x_1 \). Thus, we must have \(-2x_1 + 3x_2 > -2x_1 + 3(2x_1) = 4x_1 > 0\), a contradiction.

Thus, we have shown that \(A \) is semimonotone. In fact, \(A \) is strictly semimonotone.
Example of a Semimonotone Matrix

Example

Let $A = \begin{bmatrix} 2 & -1 \\ -2 & 3 \end{bmatrix}$. Let $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^2$ where $0 \leq x \leq 0$.

Clearly, if $x_1 = 0$, then we must have that $x_2 > 0$ and we get that $(Ax)_2 = 3x_2 > 0$.

Similarly, if $x_2 = 0$, then we must have that $x_1 > 0$ and we get that $(Ax)_1 = 2x_1 > 0$.

Now suppose $x_1, x_2 > 0$. In this case, $Ax = \begin{bmatrix} 2x_1 - x_2 - 2x_1 + 3x_2 \\ -2x_2 \end{bmatrix}$.

Suppose $Ax < 0$. Then $x_2 > 2x_1$. Thus, we must have $-2x_1 + 3x_2 > -2x_1 + 3(2x_1) = 4x_1 > 0$, a contradiction.

Thus, we have shown that A is semimonotone. In fact, A is strictly semimonotone.
Example of a Semimonotone Matrix

Example

Let $A = \begin{bmatrix} 2 & -1 \\ -2 & 3 \end{bmatrix}$. Let $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^2$ where $0 \neq x \geq 0$.

- Clearly, if $x_1 = 0$, then we must have that $x_2 > 0$ and we get that $(Ax)_2 = 3x_2 > 0$.
- Suppose $Ax < 0$. Then $x_2 > 2x_1$. Thus, we must have $-2x_1 + 3x_2 > -2x_1 + 3(2x_1) = 4x_1 > 0$, a contradiction. Therefore, we have shown that A is semimonotone. In fact, A is strictly semimonotone.
Example of a Semimonotone Matrix

Example

Let \(A = \begin{bmatrix} 2 & -1 \\ -2 & 3 \end{bmatrix} \). Let \(x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^2 \) where \(0 \neq x \geq 0 \).

- Clearly, if \(x_1 = 0 \), then we must have that \(x_2 > 0 \) and we get that \((Ax)_2 = 3x_2 > 0\).
- Similarly, if \(x_2 = 0 \), then we must have that \(x_1 > 0 \) and we get that \((Ax)_1 = 2x_1 > 0\).
Example of a Semimonotone Matrix

Example

Let \(A = \begin{bmatrix} 2 & -1 \\ -2 & 3 \end{bmatrix} \). Let \(x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^2 \) where \(0 \neq x \geq 0 \).

- Clearly, if \(x_1 = 0 \), then we must have that \(x_2 > 0 \) and we get that \((Ax)_2 = 3x_2 > 0\).
- Similarly, if \(x_2 = 0 \), then we must have that \(x_1 > 0 \) and we get that \((Ax)_1 = 2x_1 > 0\).
- Now suppose \(x_1, x_2 > 0 \). In this case,

\[
Ax = \begin{bmatrix} 2x_1 - x_2 \\ -2x_1 + 3x_2 \end{bmatrix}
\]
Example of a Semimonotone Matrix

Example

Let \(A = \begin{bmatrix} 2 & -1 \\ -2 & 3 \end{bmatrix} \). Let \(x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^2 \) where \(0 \neq x \geq 0 \).

- Clearly, if \(x_1 = 0 \), then we must have that \(x_2 > 0 \) and we get that \((Ax)_2 = 3x_2 > 0\).
- Similarly, if \(x_2 = 0 \), then we must have that \(x_1 > 0 \) and we get that \((Ax)_1 = 2x_1 > 0\).
- Now suppose \(x_1, x_2 > 0 \). In this case,

\[
Ax = \begin{bmatrix} 2x_1 - x_2 \\ -2x_1 + 3x_2 \end{bmatrix}
\]

Suppose \(Ax < 0 \). Then \(x_2 > 2x_1 \). Thus, we must have

\[
-2x_1 + 3x_2 > -2x_1 + 3(2x_1) = 4x_1 > 0,
\]

a contradiction.
Example of a Semimonotone Matrix

Example

Let \(A = \begin{bmatrix} 2 & -1 \\ -2 & 3 \end{bmatrix} \). Let \(x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^2 \) where \(0 \neq x \geq 0 \).

- Clearly, if \(x_1 = 0 \), then we must have that \(x_2 > 0 \) and we get that \((Ax)_2 = 3x_2 > 0\).
- Similarly, if \(x_2 = 0 \), then we must have that \(x_1 > 0 \) and we get that \((Ax)_1 = 2x_1 > 0\).
- Now suppose \(x_1, x_2 > 0 \). In this case,

\[
Ax = \begin{bmatrix} 2x_1 - x_2 \\ -2x_1 + 3x_2 \end{bmatrix}
\]

Suppose \(Ax < 0 \). Then \(x_2 > 2x_1 \). Thus, we must have

\[
-2x_1 + 3x_2 > -2x_1 + 3(2x_1) = 4x_1 > 0,
\]

a contradiction.

Thus, we have shown that \(A \) is semimonotone. In fact, \(A \) is strictly semimonotone.
Outline

1 Introduction
- The definition of semimonotone & an example
- Some observations and previous results
- Questions

2 Some Results
- What kinds of matrices are semimonotone?
- Properties of semimonotone matrices

3 Conjectures

4 Future Directions
A few simple observations about a semimonotone matrix

Suppose $A \in M_n(\mathbb{R})$ is semimonotone.

- By letting $x = e_k$, we obtain that $a_{kk} \geq 0$, for each $k = 1, 2, \ldots, n$. This means that the diagonal entries of A must be nonnegative.
A few simple observations about a semimonotone matrix

Suppose $A \in M_n(\mathbb{R})$ is semimonotone.

- By letting $x = e_k$, we obtain that $a_{kk} \geq 0$, for each $k = 1, 2, \ldots, n$. This means that the diagonal entries of A must be nonnegative.
- Every principal submatrix $A(\alpha, \alpha)$ must be semimonotone, where $\alpha \subseteq \{1, 2, \ldots, n\}$. (This can be shown by taking any x where $x[\alpha] > 0$ and all the other entries are zero.)
A few simple observations about a semimonotone matrix

Suppose $A \in M_n(\mathbb{R})$ is semimonotone.

- By letting $x = e_k$, we obtain that $a_{kk} \geq 0$, for each $k = 1, 2, \ldots, n$. This means that the diagonal entries of A must be nonnegative.
- Every principal submatrix $A(\alpha, \alpha)$ must be semimonotone, where $\alpha \subseteq \{1, 2, \ldots, n\}$. (This can be shown by taking any x where $x[\alpha] > 0$ and all the other entries are zero.)

Proposition

A matrix $A \in M_n(\mathbb{R})$ is semimonotone if and only if

1. Every proper principal submatrix of A is semimonotone, and
2. For every $x > 0$, $(Ax)_k \geq 0$ for some k.

Megan Wendler
Semimonotone Matrices
May 27, 2018
7 / 37
Before we discuss previous results, we need to first recall some definitions.

Definition

A matrix $A \in M_n(\mathbb{R})$ is a P-matrix (P_0-matrix) if all its principal minors are positive (nonnegative).
Before we discuss previous results, we need to first recall some definitions.

Definition

A matrix $A \in M_n(\mathbb{R})$ is a P-matrix (P_0-matrix) if all its principal minors are positive (nonnegative).

Definition

A matrix $A \in M_n(\mathbb{R})$ is *copositive* if $x^T A x \geq 0$ for all $x \geq 0$.
Before we discuss previous results, we need to first recall some definitions.

Definition

A matrix $A \in M_n(\mathbb{R})$ is a *P*-matrix (P_0-matrix) if all its principal minors are positive (nonnegative).

Definition

A matrix $A \in M_n(\mathbb{R})$ is *copositive* if $x^T A x \geq 0$ for all $x \geq 0$.

Definition

A matrix $A \in M_n(\mathbb{R})$ is *semipositive* if there exists an $x \geq 0$ such that $A x > 0$. By continuity of a matrix as a linear map, this is equivalent to saying that there exists an $x > 0$ such that $A x > 0$. The class of semipositive matrices is denoted S.

Megan Wendler
Semimonotone Matrices
May 27, 2018 8/37
Before we discuss previous results, we need to first recall some definitions.

Definition

A matrix $A \in M_n(\mathbb{R})$ is a P-matrix (P_0-matrix) if all its principal minors are positive (nonnegative).

Definition

A matrix $A \in M_n(\mathbb{R})$ is **copositive** if $x^T Ax \geq 0$ for all $x \geq 0$.

Definition

A matrix $A \in M_n(\mathbb{R})$ is **semipositive** if there exists an $x \geq 0$ such that $Ax > 0$. By continuity of a matrix as a linear map, this is equivalent to saying that there exists an $x > 0$ such that $Ax > 0$. The class of semipositive matrices is denoted S.

Definition

A matrix $A \in M_n(\mathbb{R})$ is said to be an S_0 matrix if there exists a $0 \neq x \geq 0$ such that $Ax \geq 0$.
Semimonotone matrices have been studied a little in the past. Below are some useful results obtained by Cottle, Pang, and Stone [1]:

1. Every nonnegative matrix is semimonotone.
2. Every P_0-matrix is semimonotone. Every P-matrix is strictly semimonotone.
3. All copositive matrices are semimonotone.
4. A is semimonotone if and only if A and all its proper principal submatrices belong to S_0.
5. A is strictly semimonotone if and only if A and all its proper principal submatrices are semipositive.
6. A is semimonotone if and only if A^T is semimonotone.
Semimonotone matrices have been studied a little in the past. Below are some useful results obtained by Cottle, Pang, and Stone [1]:

1. Every nonnegative matrix is semimonotone.
Previous Results

Semimonotone matrices have been studied a little in the past. Below are some useful results obtained by Cottle, Pang, and Stone [1]:

1. Every nonnegative matrix is semimonotone.
2. Every P_0-matrix is semimonotone. Every P-matrix is strictly semimonotone.
Semimonotone matrices have been studied a little in the past. Below are some useful results obtained by Cottle, Pang, and Stone [1]:

1. Every nonnegative matrix is semimonotone.
2. Every P_0-matrix is semimonotone. Every P-matrix is strictly semimonotone.
3. All copositive matrices are semimonotone.
Semimonotone matrices have been studied a little in the past. Below are some useful results obtained by Cottle, Pang, and Stone [1]:

1. Every nonnegative matrix is semimonotone.
2. Every P_0-matrix is semimonotone. Every P-matrix is strictly semimonotone.
3. All copositive matrices are semimonotone.
4. A is semimonotone if and only if A and all its proper principal submatrices belong to S_0.
Semimonotone matrices have been studied a little in the past. Below are some useful results obtained by Cottle, Pang, and Stone [1]:

1. Every nonnegative matrix is semimonotone.
2. Every P_0-matrix is semimonotone. Every P-matrix is strictly semimonotone.
3. All copositive matrices are semimonotone.
4. A is semimonotone if and only if A and all its proper principal submatrices belong to S_0.
5. A is strictly semimonotone if and only if A and all its proper principal submatrices are semipositive.
Semimonotone matrices have been studied a little in the past. Below are some useful results obtained by Cottle, Pang, and Stone [1]:

1. Every nonnegative matrix is semimonotone.
2. Every P_0-matrix is semimonotone. Every P-matrix is strictly semimonotone.
3. All copositive matrices are semimonotone.
4. A is semimonotone if and only if A and all its proper principal submatrices belong to S_0.
5. A is strictly semimonotone if and only if A and all its proper principal submatrices are semipositive.
6. A is semimonotone if and only if A^T is semimonotone.
Semimonotone matrices have been studied a little in the past. Below are some useful results obtained by Cottle, Pang, and Stone [1]:

1. Every nonnegative matrix is semimonotone.
2. Every P_0-matrix is semimonotone. Every P-matrix is strictly semimonotone.
3. All copositive matrices are semimonotone.
4. A is semimonotone if and only if A and all its proper principal submatrices belong to S_0.
5. A is strictly semimonotone if and only if A and all its proper principal submatrices are semipositive.
6. A is semimonotone if and only if A^T is semimonotone.

Besides these few results, however, not much can be currently found about semimonotone matrices.
1. **Introduction**
 - The definition of semimonotone & an example
 - Some observations and previous results
 - Questions

2. **Some Results**
 - What kinds of matrices are semimonotone?
 - Properties of semimonotone matrices

3. **Conjectures**

4. **Future Directions**
Some Questions

- What kinds of matrices are semimonotone matrices? When is a matrix that is not a P_0 matrix or a copositive matrix a semimonotone matrix?

What are some properties of semimonotone matrices?

What are the possible spectrums of a semimonotone matrix?

Given a matrix A, what is the best way to tell if A is a semimonotone matrix?

How does one create a generic semimonotone matrix?
Some Questions

- What kinds of matrices are semimonotone matrices? When is a matrix that is not a P_0 matrix or a copositive matrix a semimonotone matrix?
- What are some properties of semimonotone matrices?
Some Questions

- What kinds of matrices are semimonotone matrices? When is a matrix that is not a P_0 matrix or a copositive matrix a semimonotone matrix?
- What are some properties of semimonotone matrices?
- What are the possible spectrums of a semimonotone matrix?
Some Questions

- What kinds of matrices are semimonotone matrices? When is a matrix that is not a P_0 matrix or a copositive matrix a semimonotone matrix?
- What are some properties of semimonotone matrices?
- What are the possible spectrums of a semimonotone matrix?
- Given a matrix A, what is the best way to tell if A is a semimonotone matrix?
Some Questions

• What kinds of matrices are semimonotone matrices? When is a matrix that is not a P_0 matrix or a copositive matrix a semimonotone matrix?
• What are some properties of semimonotone matrices?
• What are the possible spectrums of a semimonotone matrix?
• Given a matrix A, what is the best way to tell if A is a semimonotone matrix?
• How does one create a generic semimonotone matrix?
1 Introduction
- The definition of semimonotone & an example
- Some observations and previous results
- Questions

2 Some Results
- What kinds of matrices are semimonotone?
- Properties of semimonotone matrices

3 Conjectures

4 Future Directions
Proposition

If $A \in M_n(\mathbb{R})$ is diagonally dominant with nonnegative diagonal entries, then A is semimonotone.
Proposition

If $A \in M_n(\mathbb{R})$ is diagonally dominant with nonnegative diagonal entries, then A is semimonotone.

Proof

It is not difficult to show the above result directly. One could also show that if A is diagonally dominant with nonnegative diagonal entries, then $A \in P_0$. Hence A is semimonotone.
Proposition

If \(A \in M_n(\mathbb{R}) \) is skew-symmetric, then \(A \) is semimonotone.
Proposition

If $A \in M_n(\mathbb{R})$ is skew-symmetric, then A is semimonotone.

Proof

It can be easily shown that if A is skew-symmetric, then $x^T Ax = 0$. Hence, A is copositive. The result follows. Alternatively, one can show that if A is skew-symmetric, then it is P_0. Hence, A is semimonotone.
Proposition

If $A \in M_n(\mathbb{R})$ is skew-symmetric, then A is semimonotone.

Proof

It can be easily shown that if A is skew-symmetric, then $x^T A x = 0$. Hence, A is copositive. The result follows. Alternatively, one can show that if A is skew-symmetric, then it is P_0. Hence, A is semimonotone.

Note neither of these results are interesting since we already knew that all P_0 matrices are semimonotone.
Proposition

Suppose A is a Z-matrix. Then A is semimonotone if and only if A is an M-matrix.

Proposition

Suppose A is a Z-matrix. Then A is strictly semimonotone if and only if A is a nonsingular M-matrix.
Proposition

Suppose $A \in M_n(\mathbb{R})$ has all proper principal submatrices semimonotone. If A has a row or column of nonnegative entries, then A is semimonotone.
Matrices with a nonnegative row or column whose proper principal submatrices are semimonotone

Proposition

Suppose $A \in M_n(\mathbb{R})$ has all proper principal submatrices semimonotone. If A has a row or column of nonnegative entries, then A is semimonotone.

Some matrices which have a row or column of nonnegative entries, and whose principal submatrices are semimonotone, are neither P_0 nor copositive. An example might be

$$A = \begin{bmatrix} 1 & 1 & 1 \\ -1 & 3 & -1 \\ 6 & -8 & 4 \end{bmatrix}$$
Proposition

Let A be a 2×2 real matrix with a nonnegative diagonal. Then A is semimonotone if and only if either all entries in A are nonnegative or the determinant of A is nonnegative.
Proposition

Let A be a 2×2 real matrix with a nonnegative diagonal. Then A is semimonotone if and only if either all entries in A are nonnegative or the determinant of A is nonnegative.

Thus, we see that if $A \in M_2(\mathbb{R})$ with a nonnegative diagonal, then A is not semimonotone if and only if $A = \begin{bmatrix} a & -b \\ -c & d \end{bmatrix}$ where $\det A < 0$.
1. Introduction
 - The definition of semimonotone & an example
 - Some observations and previous results
 - Questions

2. Some Results
 - What kinds of matrices are semimonotone?
 - Properties of semimonotone matrices

3. Conjectures

4. Future Directions
Some basic properties of semimonotone matrices

Proposition

Let A be a semimonotone matrix. If E is a nonnegative matrix, then $A + E$ is semimonotone.
Some basic properties of semimonotone matrices

Proposition

Let \(A \) be a semimonotone matrix. If \(E \) is a nonnegative matrix, then \(A + E \) is semimonotone.

Proposition

Let \(P \in M_n(\mathbb{R}) \) be a permutation matrix. Then a matrix \(A \in M_n(\mathbb{R}) \) is semimonotone if and only if \(PAP^T \) is semimonotone.
Proposition

Let A be a semimonotone matrix. If E is a nonnegative matrix, then $A + E$ is semimonotone.

Proposition

Let $P \in M_n(\mathbb{R})$ be a permutation matrix. Then a matrix $A \in M_n(\mathbb{R})$ is semimonotone if and only if PAP^T is semimonotone.

Proposition

Let $A \in M_n(\mathbb{R})$ be a block upper triangular matrix with diagonal blocks A_1, A_2, \ldots, A_n which are semimonotone. Then A is semimonotone.
Multiplying a semimonotone matrix by a diagonal matrix with nonnegative diagonal entries

Proposition

Let $A \in M_n(\mathbb{R})$ and let $D = \text{diag}(d_1, d_2, \ldots, d_n)$ where $d_i \geq 0$. If A is semimonotone, then the matrices AD and DA are semimonotone.
Proposition

Let $A \in M_n(\mathbb{R})$ and let $D = \text{diag}(d_1, d_2, \ldots, d_n)$ where $d_i \geq 0$. If A is semimonotone, then the matrices AD and DA are semimonotone.

Note the converse is not true. Take, for example

$$A = \begin{bmatrix} 1 & -2 \\ -2 & 1 \end{bmatrix}, \quad D = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}.$$

A is not semimonotone but both

$$AD = \begin{bmatrix} 0 & -2 \\ 0 & 1 \end{bmatrix} \quad \text{and} \quad DA = \begin{bmatrix} 0 & 0 \\ -2 & 1 \end{bmatrix}$$

are semimonotone.
What if the diagonal entries of D are all positive?

However, if $D = \text{diag}(d_1, d_2, \ldots, d_n)$ where $d_i > 0$, then we get the following.
What if the diagonal entries of D are all positive?

However, if $D = \text{diag}(d_1, d_2, \ldots, d_n)$ where $d_i > 0$, then we get the following.

Proposition

Let $A \in M_n(\mathbb{R})$ and let $D = \text{diag}(d_1, d_2, \ldots, d_n)$ be a diagonal matrix with $d_i > 0$. Then the following statements are equivalent.

(i) A is semimonotone

(ii) DA is semimonotone

(iii) AD is semimonotone
Proposition

Given any real $n \times n$ matrix with nonnegative trace and spectrum σ, there exists a semimonotone matrix A such that $\sigma(A) = \sigma$.

Proof (Outline)

Let σ be the spectrum of any real $n \times n$ matrix M with nonnegative trace. The characteristic polynomial of M will be in the form

$$p(x) = x^n + a_{n-1}x^{n-1} + a_{n-2}x^{n-2} + \cdots + a_1x + a_0$$

where $a_{n-1} = -\text{tr}(M) \leq 0$.

It can be shown that the companion matrix of $p(x)$ given by

$$A = \begin{bmatrix}
0 & 0 & \cdots & 0 \\
-1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1 \\
-\alpha_{n-1} & -\alpha_{n-2} & \cdots & -\alpha_0
\end{bmatrix}$$

is semimonotone.
Spectral restrictions of semimonotone matrices

Proposition

Given any real $n \times n$ matrix with nonnegative trace and spectrum σ, there exists a semimonotone matrix A such that $\sigma(A) = \sigma$.

Proof (Outline)

- Let σ be the spectrum of any real $n \times n$ matrix M with nonnegative trace.
- The characteristic polynomial of M will be in the form

 $$p(x) = x^n + a_{n-1}x^{n-1} + a_{n-2}x^{n-2} + \cdots + a_1x + a_0$$

 where $a_{n-1} = -\text{tr}(M) \leq 0$.

- It can be shown that the companion matrix of $p(x)$ given by

 $$A = \begin{bmatrix}
 0 & 0 & \cdots & 0 & -a_0 \\
 1 & 0 & \cdots & 0 & -a_1 \\
 0 & 1 & \cdots & 0 & -a_2 \\
 \vdots & \vdots & \ddots & \vdots & \vdots \\
 0 & 0 & \cdots & 1 & -a_{n-1}
 \end{bmatrix}$$

 is semimonotone.
Suppose $A \in M_n(\mathbb{R})$ with all proper principal submatrices semimonotone. Then A is semimonotone if and only if for all invertible diagonal matrices $D \geq 0$ where $D \in M_n(\mathbb{R})$, $A + D$ does not have a positive nullvector.
1. Introduction
 - The definition of semimonotone & an example
 - Some observations and previous results
 - Questions

2. Some Results
 - What kinds of matrices are semimonotone?
 - Properties of semimonotone matrices

3. Conjectures

4. Future Directions
Possible characterization of semimonotone matrices

Conjecture

Suppose $A \in M_n(\mathbb{R})$ has all proper principal submatrices semimonotone. Then

$$A \text{ is not semimonotone} \iff \text{adj}(A) \geq 0, \text{ with all non-diagonal entries strictly greater than zero, and } \det A < 0.$$

The backwards direction of this conjecture can easily be proven. However, the forward direction remains unknown.
Since $A \text{adj}(A) = \det(A)I$, the previous conjecture is equivalent to the following one (as long as A is invertible).

Conjecture

Suppose $A \in M_n(\mathbb{R})$ has all proper principal submatrices semimonotone. Then

\[
A \text{ is not semimonotone} \iff A^{-1} \leq 0, \text{ with all non-diagonal entries strictly less than zero, and } \det A < 0.
\]
How do almost semimonotone matrices act on vectors with mixed signs?

- It is well-known that a P-matrix does not completely reverse the sign of any nonzero vector x. For example, if $A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$ and $x = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$, then $Ax = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ which completely changed the sign of the vector.
How do almost semimonotone matrices act on vectors with mixed signs?

- It is well-known that a P-matrix does not completely reverse the sign of any nonzero vector x.
- Strictly semimonotone matrices act the same way on positive vectors and negative vectors. However, they don’t necessarily act the same way on vectors containing positive and negative entries.

\[A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}, \quad x = \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \quad Ax = \begin{bmatrix} -1 \\ 1 \end{bmatrix} \]

which completely changed the sign of the vector.
How do almost semimonotone matrices act on vectors with mixed signs?

- It is well-known that a P-matrix does not completely reverse the sign of any nonzero vector x.
- Strictly semimonotone matrices act the same way on positive vectors and negative vectors. However, they don’t necessarily act the same way on vectors containing positive and negative entries.
- For example, if $A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$ and $x = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$, then

\[
Ax = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}
\]

which completely changed the sign of the vector.
How do almost semimonotone matrices act on vectors with mixed signs?

- But what if we now take a matrix which is not semimonotone but whose proper principal submatrices are all (strictly) semimonotone? We’ll call this type of matrix *almost (strictly) semimonotone*.

Every 2×2 almost semimonotone matrix acts the same way on vectors of mixed sign as P-matrices do in that they don’t completely reverse their sign.

Is this true for larger matrices?

Conjecture

Suppose $A \in \mathbb{M}_n(\mathbb{R})$ is almost semimonotone. Then for all vectors x of mixed sign, there exists a k such that $x_k(Ax)_k > 0$.

Megan Wendler
Semimonotone Matrices
May 27, 2018 28 / 37
How do almost semimonotone matrices act on vectors with mixed signs?

- But what if we now take a matrix which is not semimonotone but whose proper principal submatrices are all (strictly) semimonotone? We’ll call this type of matrix *almost (strictly) semimonotone*.

- We’ll also call x a *vector of mixed sign* if x contains both positive and negative entries, but no zero entries.
How do almost semimonotone matrices act on vectors with mixed signs?

- But what if we now take a matrix which is not semimonotone but whose proper principal submatrices are all (strictly) semimonotone? We’ll call this type of matrix *almost (strictly) semimonotone*.

- We’ll also call \mathbf{x} a *vector of mixed sign* if \mathbf{x} contains both positive and negative entries, but no zero entries.

- Every 2×2 almost semimonotone matrix acts the same way on vectors of mixed sign as P-matrices do in that they don’t completely reverse their sign.
How do almost semimonotone matrices act on vectors with mixed signs?

- But what if we now take a matrix which is not semimonotone but whose proper principal submatrices are all (strictly) semimonotone? We’ll call this type of matrix *almost (strictly) semimonotone*.
- We’ll also call x a *vector of mixed sign* if x contains both positive and negative entries, but no zero entries.
- Every 2×2 almost semimonotone matrix acts the same way on vectors of mixed sign as P-matrices do in that they don’t completely reverse their sign.
- Is this true for larger matrices?

Conjecture

Suppose $A \in M_n(\mathbb{R})$ is almost semimonotone. Then for all vectors x of mixed sign, there exists a k such that $x_k(Ax)_k > 0$.

Definition

A signature matrix S is a diagonal matrix with each diagonal entry being ± 1.

A related conjecture to the previous one is the following.

Conjecture

Suppose A is almost semimonotone. Then for any signature matrix $S \neq \pm I$, SAS is semimonotone.

For this to be true we'd also need to prove the following.

Conjecture

Suppose A is almost semimonotone. Then for any signature matrix S, all proper principal submatrices of SAS are semimonotone.
Almost semimonotone and signature similarities

Definition
A signature matrix S is a diagonal matrix with each diagonal entry being ± 1.

A related conjecture to the previous one is the following.

Conjecture
Suppose A is almost semimonotone. Then for any signature matrix $S \neq \pm I$, SAS is semimonotone.
Definition
A signature matrix S is a diagonal matrix with each diagonal entry being ± 1.

A related conjecture to the previous one is the following.

Conjecture
Suppose A is almost semimonotone. Then for any signature matrix $S \neq \pm I$, SAS is semimonotone.

For this to be true we’d also need to prove the following.

Conjecture
Suppose A is almost semimonotone. Then for any signature matrix S, all proper principal submatrices of SAS are semimonotone.
Theorem

$A \in M_n(\mathbb{R})$ is a P-matrix (P_0-matrix) if and only if for every signature matrix $S \in M_n(\mathbb{R})$, SAS is an S-matrix (S_0-matrix).
Signature similarities, P-matrices, and strictly semimonotone matrices

Theorem

$A \in M_n(\mathbb{R})$ is a P-matrix (P_0-matrix) if and only if for every signature matrix $S \in M_n(\mathbb{R})$, SAS is an S-matrix (S_0-matrix).

Since a matrix A is (strictly) semimonotone if and only if A and all its proper principal submatrices are S_0-matrices (S-matrices) we can get the following result.

Proposition

The following are equivalent:

(a) A is a P_0-matrix (P-matrix).
(b) SAS is an S_0-matrix (S-matrix) for all signature matrices S.
(c) SAS is (strictly) semimonotone for all signature matrices S.
Almost semimonotone implies all proper principal submatrices are P_0?

Let us look at the previous conjecture again.

Conjecture

Suppose A is almost semimonotone. Then for any signature matrix S, all proper principal submatrices of SAS are semimonotone.
Almost semimonotone implies all proper principal submatrices are P_0?

Let us look at the previous conjecture again.

Conjecture
Suppose A is almost semimonotone. Then for any signature matrix S, all proper principal submatrices of SAS are semimonotone.

This could only be true if all the proper principal submatrices of A were P_0-matrices.

Conjecture
Suppose A is almost semimonotone. Then all proper principal submatrices are P_0-matrices.
To summarize

To summarize I would really like to prove all of the following about almost semimonotone matrices.

Conjecture

If A is almost semimonotone, then

1. $\det A < 0$
To summarize I would really like to prove all of the following about almost semimonotone matrices.

Conjecture

If A is almost semimonotone, then

1. $\det A < 0$
2. $A^{-1} \leq 0$ with non-diagonal entries strictly less than zero
To summarize I would really like to prove all of the following about almost semimonotone matrices.

Conjecture
If A is almost semimonotone, then

1. $\det A < 0$
2. $A^{-1} \preceq 0$ with non-diagonal entries strictly less than zero
3. Every proper principal submatrix of A is a P_0-matrix
To summarize I would really like to prove all of the following about almost semimonotone matrices.

Conjecture

If A is almost semimonotone, then

1. $\det A < 0$
2. $A^{-1} \leq 0$ with non-diagonal entries strictly less than zero
3. Every proper principal submatrix of A is a P_0-matrix
4. The matrix SAS is semimonotone for every signature matrix $S \neq \pm I$.
To summarize I would really like to prove all of the following about almost semimonotone matrices.

Conjecture

If A is almost semimonotone, then

1. $\det A < 0$
2. $A^{-1} \leq 0$ with non-diagonal entries strictly less than zero
3. Every proper principal submatrix of A is a P_0-matrix
4. The matrix SAS is semimonotone for every signature matrix $S \neq \pm I$.
5. A cannot reverse the sign of a vector with both positive and negative entries (but no zero entries).
Some results

Lemma

If A does not completely reverse the sign of any vector of mixed sign, then for any signature matrix $S \neq \pm I$, SAS is strictly semimonotone. (Note this implies that all proper principal submatrices are P-matrices.)

Proposition

Suppose A has all proper principal submatrices semimonotone and suppose that A does not reverse the sign of a vector of mixed sign. Then either A is a P-matrix or A is almost semimonotone (and almost-P-matrices).

Proposition

Suppose A is an almost semimonotone matrix which is also an almost P_0 matrix. Then $A^{-1} \leq 0$.

Megan Wendler
Semimonotone Matrices
May 27, 2018 33 / 37
Some results

Lemma

If A does not completely reverse the sign of any vector of mixed sign, then for any signature matrix $S \neq \pm I$, SAS is strictly semimonotone. (Note this implies that all proper principal submatrices are P-matrices.)

Proposition

Suppose A has all proper principal submatrices semimonotone and suppose that A does not reverse the sign of a vector of mixed sign. Then either A is a P-matrix or A is almost semimonotone (and almost-P).
Some results

Lemma

If A does not completely reverse the sign of any vector of mixed sign, then for any signature matrix $S \neq \pm I$, SAS is strictly semimonotone. (Note this implies that all proper principal submatrices are P-matrices.)

Proposition

Suppose A has all proper principal submatrices semimonotone and suppose that A does not reverse the sign of a vector of mixed sign. Then either A is a P-matrix or A is almost semimonotone (and almost-P).

Proposition

Suppose A is an almost semimonotone matrix which is also an almost P_0 matrix. Then $A^{-1} \leq 0$.
Outline

1 Introduction
- The definition of semimonotone & an example
- Some observations and previous results
- Questions

2 Some Results
- What kinds of matrices are semimonotone?
- Properties of semimonotone matrices

3 Conjectures

4 Future Directions
Prove all these conjectures or find counterexamples.
Future Directions

- Prove all these conjectures or find counterexamples.
Future Directions

- Prove all these conjectures or find counterexamples.
- Is it true that a semimonotone matrix is the sum of a P_0 matrix and a nonnegative matrix, or something similar?
Future Directions

- Prove all these conjectures or find counterexamples.
- Is it true that a semimonotone matrix is the sum of a P_0 matrix and a nonnegative matrix, or something similar?
- Find a way to create generic semimonotone matrices or test whether or not a matrix is semimonotone.
Thank you.