§Appendix C Sigma Notation

Let \(a_1, a_2, \ldots, a_n, \ldots \) be a sequence of numbers.

- \(a_2 \) is the second number in the sequence
- \(a_i \) is the \(i \)th number in the sequence

define

\[
\sum_{i=1}^{n} a_i = a_1 + a_2 + \cdots + a_n
\]

where \(i \) is the index of summation

1 is the starting value of \(i \) in this example

\(n \) is the final value of \(i \) in this example

Example. Let \(a_i = i \)

\[
\sum_{i=1}^{4} i = 1 + 2 + 3 + 4 = 10
\]

Example. Let \(a_i = i^2 \)

\[
\sum_{i=1}^{4} i^2 = 1^2 + 2^2 + 3^2 + 4^2
\]

\[= 1 + 4 + 9 + 16 = 30\]

Four Basic Properties of Sums

Let \(a_1, a_2, \ldots \) and \(b_1, b_2, \ldots \) be sequences of numbers and let \(c \) be a constant.

1. \(\sum_{i=1}^{n} c = nc \)
2. \(\sum_{i=1}^{n} c a_i = c \sum_{i=1}^{n} a_i \)
3. \(\sum_{i=1}^{n} (a_i + b_i) = \sum_{i=1}^{n} a_i + \sum_{i=1}^{n} b_i \)
4. \(\sum_{i=1}^{n} (a_i - b_i) = \sum_{i=1}^{n} a_i - \sum_{i=1}^{n} b_i \)

Why?

1. \(\sum_{i=1}^{3} c = c + c + c = 3c \)
2. \(\sum_{i=1}^{3} c a_i = c a_1 + c a_2 + c a_3 = c (a_1 + a_2 + a_3) = c \sum_{i=1}^{n} a_i \)
3. \(\sum_{i=1}^{n} (a_i + b_i) = (a_1 + b_1) + (a_2 + b_2) + (a_3 + b_3) = (a_1 + a_2 + a_3) + (b_1 + b_2 + b_3) = \sum_{i=1}^{n} a_i + \sum_{i=1}^{n} b_i \)
4. similar to 3.
Two Sums of Powers

A. $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$

B. $\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$

Proof of (A)

\[
\begin{align*}
1 & + 2 + \ldots + (n-1) + n \\
n & + (n-1) + \ldots + 2 + 1 \\
(n+1) & + (n+1) + \cdots + (n+1) + (n+1) \\
& = n(n+1)
\end{align*}
\]

This is equal to $2 \sum_{i=1}^{n} i$, so we must divide by 2 to get the final result.

Proof of (B)

recall $(x + y)^3 = x^3 + 3x^2y + 3xy^2 + y^3$

Consider the following telescoping sum\[
\begin{align*}
\sum_{i=1}^{n} [(1 + i)^3 - i^3] & = (2^3 - 1^3) + (3^3 - 2^3) + \ldots + (n^3 - (n-1)^3) + ((n+1)^3 - n^3) \\
& = (n+1)^3 - 1 \\
& = n^3 + 3n^2 + 3n \quad [1]
\end{align*}
\]
on the other hand\[
\begin{align*}
\sum_{i=1}^{n} [(1 + i)^3 - i^3] & = \sum_{i=1}^{n} (1 + 3i + 3i^2) \\
& = \sum_{i=1}^{n} 1 + \sum_{i=1}^{n} 3i + \sum_{i=1}^{n} 3i^2 \\
& = \sum_{i=1}^{n} 1 + 3 \sum_{i=1}^{n} i + 3 \sum_{i=1}^{n} i^2 \\
& = n + 3 \frac{n(n+1)}{2} + 3S \quad [2]
\end{align*}
\]
where S is the sum we seek. Equating [1] with [2]

\[
\begin{align*}
n + \frac{3}{2} (n^2 + n) + 3S & = n^3 + 3n^2 + 3n \\
3S & = n^3 + \frac{3}{2} n^2 + \frac{1}{2} n \\
S & = \frac{2n^3 + 3n^2 + n}{6} = \frac{n(2n^2 + 3n + 1)}{6} = \frac{n(n+1)(2n+1)}{6}
\end{align*}
\]

\[\blacksquare\]
§5.1 Areas and Distances

The Area Problem

Find the area of the region S lying under the graph of $y = f(x)$ on the interval from $x = a$ to $x = b$.

$$\langle \ldots a \ldots b \ldots x^- \ldots, \ldots, \text{curve, } f, S \rangle$$

Approx. the area under f by a sum of rectangles.

$$\langle a \ldots b \ldots, \ldots, f, \text{four rectangles, } x_1^*, x_2^*, x_3^*, x_4^* \rangle$$

It's easy to compute the area of a rectangle

$$\langle \text{rectangle, width } \Delta x \text{ of subinterval, height } f(x_i^*), x_i^* \rangle$$

sample point for i^{TH} rectangle

Take the limit as the number of rectangles increases to ∞.

Example. Estimate the area A under the graph of $f(x) = x$ from $x = 0$ to $x = 1$.

The width of each rectangle is $\Delta x = 1/4$. Area of rectangles

\[R_4 = \Delta x \cdot \frac{1}{4} + \Delta x \cdot \frac{1}{2} + \Delta x \cdot \frac{3}{4} + \Delta x \cdot 1 \]

\[= \Delta x \left(\frac{1}{4} + \frac{1}{2} + \frac{3}{4} + 1 \right) \]

\[= \Delta x \cdot \frac{1+2+3+4}{4} \]

\[= \frac{1}{4} \cdot \frac{10}{4} = \frac{10}{16} = \frac{5}{8} \]

Clearly $A < R_4$
Alternatively, let x^*_i be the left hand endpoint of each subinterval.

$\langle 0 \ldots 1, \ 0 \ldots 1, \ f(x) = x, \text{rectangles} \rangle$

Clearly

$L_4 < A < R_4$

$\frac{3}{8} < A < \frac{5}{8}$

Improve estimate by dividing area into 8 strips

$L_8 < A < R_8$

$\frac{7}{16} < A < \frac{9}{16}$

Area of rectangles

$L_4 = \Delta x \cdot \frac{0}{4} + \Delta x \cdot \frac{1}{4} + \Delta x \cdot \frac{1}{2} + \Delta x \cdot \frac{3}{4}$

$= \Delta x \cdot \frac{0+1+2+3}{4}$

$= \frac{1}{4} \cdot \frac{6}{4} = \frac{6}{16} = \frac{3}{8}$
Example. Obtain the exact area under $f(x) = x$ from $x = 0$ to $x = 1$ by taking the limit as n increases.

Let the sample points be right hand endpoints of each subinterval.

\[\langle 0 \ldots 1, \ldots, f(x) = x, \text{rectangles of heights } \frac{1}{n}, \frac{2}{n}, \frac{3}{n}, \ldots \rangle \]

\[R_n = \Delta x \cdot \frac{1}{n} + \Delta x \cdot \frac{2}{n} + \cdots + \Delta x \cdot \frac{n}{n} \]

\[= \Delta x \cdot \frac{1}{n} (1 + 2 + \cdots + n) \]

\[= \frac{1}{n^2} (1 + 2 + \cdots + n) \]

\[= \frac{1}{n^2} \frac{n(n+1)}{2} = \frac{n+1}{2n} \]

Exact area

\[A = \lim_{n \to \infty} R_n \]

\[= \lim_{n \to \infty} \frac{n+1}{2n} \]

\[= \frac{1}{2} \]

Alternatively, let the sample points be left hand endpoints of each subinterval.

heights of rectangles = \[\frac{0}{n}, \frac{1}{n}, \frac{2}{n}, \ldots, \frac{n-1}{n} \]

\[L_n = \Delta x \cdot \frac{0}{n} + \Delta x \cdot \frac{1}{n} + \cdots + \Delta x \cdot \frac{n-1}{n} \]

\[= \Delta x \cdot \frac{1}{n} (0 + 1 + \cdots + (n-1)) \]

\[= \frac{1}{n^2} (0 + 1 + \cdots + (n-1)) \]

\[= \frac{1}{n^2} \frac{(n-1)n}{2} = \frac{n-1}{2n} \]

Exact Area

\[A = \lim_{n \to \infty} L_n \]

\[= \lim_{n \to \infty} \frac{n-1}{2n} = \frac{1}{2} \]

\[\blacksquare \]
Fact: We can take the height of the \(i^{th}\) rectangle as \(f(x_i^*)\) for any number \(x_i^*\) in the \(i^{th}\) subinterval.

\[
A = \lim_{n \to \infty} \left[f(x_1^*) \Delta x + f(x_2^*) \Delta x + \cdots + f(x_n^*) \Delta x \right]
\]

\[
A = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i^*) \Delta x
\]

This formula works for any continuous function \(f\)

\[\langle \ldots a \ldots b \ldots, 0 \ldots, i^{th} \text{ rect.}, \text{width } \Delta x, x_i^*, \text{height } f(x_i^*) \rangle\]

The Distance Problem

Find the distance traveled by an object if its velocity is known

If the velocity is constant

\[
\text{distance} = \text{velocity} \times \text{time}
\]

Example

120 miles = 60 \(\text{miles/hour}\) \(\times\) 2 hours

What if the velocity varies?

\[\langle \ldots a \ldots b \ldots, \text{time } t^*, \ldots, \text{velocity } v^*, \text{curve} \rangle\]

define time subintervals of length \(\Delta t\)

pick sample time \(t_i^*\) in each subinterval

approximate the velocity in each subinterval as \(v(t_i^*)\)
\[d = \text{distance traveled} \]
\[\approx v(t_1^*)\Delta t + v(t_2^*)\Delta t + v(t_3^*)\Delta t + v(t_4^*)\Delta t \]
\[= \sum_{i=1}^{4} v(t_i^*)\Delta t \]

The exact distance is obtained in the limit as we use more and more subintervals.

\[d = \lim_{n \to \infty} \sum_{i=1}^{n} v(t_i^*)\Delta t \]

§5.2 The Definite Integral

\[\langle \ldots \ a \ \ldots \ b \ \ldots \ x, \ \ldots, \ \text{curve} \ f \rangle \]

define the definite integral

Steps

Divide \([a, b]\) into \(n\) subintervals of equal width

\[\Delta x = (b - a)/n \quad \langle \text{add subinterval } i \rangle \]
\[x_i = a + i\Delta x \quad \langle \text{add } x_0, x_{i-1}, x_i, x_n \rangle \]

Choose sample points in these subintervals

\[x_1^*, x_2^*, \ldots x_n^* \quad \langle \text{add } x_i^* \rangle \]

Construct the Riemann Sum

\[\sum_{i=1}^{n} f(x_i^*)\Delta x \]

Take the limit \(n \to \infty\) to obtain the definite integral

\[\int_a^b f(x) \, dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i^*)\Delta x \]

Example. The distance problem

\[d = \int_a^b v(t) \, dt \]

\[\square \]
Notation (integral sign, lower limit of integration a, upper limit b, integrand, ghost of Δx)

Note that integral does not depend on “x”

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} f(t)dt$$

x and t are dummy variables.

Example. Express

$$I = \lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{1 + \left(\frac{i}{n}\right)^2} \cdot \frac{1}{n}$$

as an integral on $[0,1]$.

Let $\Delta x = \frac{1}{n}$ and $f(x_i) = \frac{1}{1+(x_i^*)^2}$ where $x_i^* = \frac{i}{n}$.

Then $I = \int_{0}^{1} \frac{1}{1+x^2} dx$
Interpretation of the Definite Integral

\[\int_a^b f(x)\,dx = \lim_{n \to \infty} \sum_{n=1}^{\infty} f(x_i^*) \Delta x \]

For \(f \) positive and \(b > a \), the Riemann sum approximates the area under the curve.

\[\langle \ldots a \ldots b \ldots x_-, \ldots, \text{graph of } f, \text{area } A, 4 \text{ rectangles} \rangle \]

Suppose \(f \) can be positive or negative

\[\langle \ldots a \ldots b \ldots x_-, \ldots, f, A_1 \text{ under } f, A_2 \text{ above } f, \text{ rectangles} \rangle \]

\[\langle \text{here } f(x_i^*) > 0 \ldots \sum f(x_i^*) \Delta x \approx A_1, \text{ here } f(x_i^*) < 0 \ldots \sum f(x_i^*) \Delta x \text{ is a negative quantity whose magnitude } \approx A_2 \rangle \]

\[\int_a^b f(x)\,dx = A_1 - A_2 = \text{net area under or above } f \text{ from } a \text{ to } b \]
Evaluating Integrals

Recall

1. \(\sum_{i=1}^{n} c = nc \)

2. \(\sum_{i=1}^{n} c a_i = c \sum_{i=1}^{n} a_i \)

3. \(\sum_{i=1}^{n} (a_i + b_i) = \sum_{i=1}^{n} a_i + \sum_{i=1}^{n} b_i \)

4. \(\sum_{i=1}^{n} (a_i - b_i) = \sum_{i=1}^{n} a_i - \sum_{i=1}^{n} b_i \)

where \(a_1, a_2, \ldots \) and \(b_1, b_2, \ldots \) are sequences of numbers and \(c \) is a constant (an expression that does not depend on the index of summation \(i \)).

Recall two sums of powers

1. \(\sum_{i=1}^{n} i = \frac{1}{2} n(n + 1) \)

2. \(\sum_{i=1}^{n} i^2 = \frac{1}{6} n(n + 1)(2n + 1) \)

Example. Prove that \(\int_{a}^{b} x \, dx = \frac{1}{2} (b^2 - a^2) \)

\(<...a \ldots b\ldots x\ldots\text{-}, \text{partition points, } \Delta x, \Delta x = \frac{b-a}{n}>\)

choose sample points in each subinterval

an easy choice is the right hand endpoints

\(x_1^* = a + \Delta x \)

\(x_2^* = a + 2\Delta x \)

\(x_i^* = a + i\Delta x \)

Begin with the definition

\[\int_{a}^{b} x \, dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i^*) \Delta x \]

\[= \lim_{n \to \infty} \sum_{i=1}^{n} x_i^* \Delta x \]
\[\lim_{n \to \infty} \sum_{i=1}^{n} (a + i\Delta x)\Delta x = \lim_{n \to \infty} \sum_{i=1}^{n} a\Delta x + i\Delta x^2 \]

\[\lim_{n \to \infty} \left(\sum_{i=1}^{n} a\Delta x + \sum_{i=1}^{n} i\Delta x^2 \right) \]

\[\int_a^b x \, dx = \lim_{n \to \infty} \sum_{i=1}^{n} a\Delta x + \sum_{i=1}^{n} i\Delta x^2 \]

\[\lim_{n \to \infty} \left(a\Delta x \sum_{i=1}^{n} 1 + \Delta x^2 \sum_{i=1}^{n} i \right) \]

\[\lim_{n \to \infty} \left(a \frac{b-a}{n} n + \left(\frac{b-a}{n} \right)^2 \frac{1}{2} n(n+1) \right) \]

\[\lim_{n \to \infty} \left(a(b-a) + (b-a)^2 \frac{1}{2} \frac{n + 1}{n} \right) \]

\[= a(b-a) + \frac{1}{2} (b-a)^2 \lim_{n \to \infty} \frac{n+1}{n} \]

\[= a(b-a) + \frac{1}{2} (b-a)^2 \]

\[= (b-a) \left(a + \frac{1}{2} (b-a) \right) \]

\[= \frac{1}{2} (b-a)(b+a) \]

\[= \frac{1}{2} (b^2 - a^2) \quad \text{we are done!} \]

Example. Prove that \(\int_0^1 x^2 \, dx = \frac{1}{3} \)

\[\left< 0 \ldots 1 \ldots x-, 0 \ldots 1 \ldots y-, y = x^2 \right> \]
width of subintervals \(\Delta x = \frac{1}{n} \)

sample points \(x_i^* = \frac{i}{n} \)

\[
\int_0^1 x^2 \, dx = \lim_{n \to \infty} \sum_{i=1}^{n} (x_i^*)^2 \Delta x
\]

\[
= \lim_{n \to \infty} \sum_{i=1}^{n} \left(\frac{i}{n} \right)^2 \frac{1}{n}
\]

\[
= \lim_{n \to \infty} \frac{1}{n^3} \sum_{i=1}^{n} i^2
\]

\[
= \lim_{n \to \infty} \frac{1}{n^3} \frac{1}{6} n(n + 1)(2n + 1)
\]

\[
= \lim_{n \to \infty} \frac{2n^3 + \ldots}{6n^3}
\]

\[
= \frac{1}{3}
\]

Properties of the definite integral

Reversing limits of integration

\[
\int_a^b f(x) \, dx = - \int_b^a f(x) \, dx
\]
Four basic properties of integrals

1. \[\int_a^b c \, dx = c(b - a) \]

2. \[\int_a^b c f(x) \, dx = c \int_a^b f(x) \, dx \]

3. \[\int_a^b f(x) + g(x) \, dx = \int_a^b f(x) \, dx + \int_a^b g(x) \, dx \]

4. \[\int_a^b f(x) - g(x) \, dx = \int_a^b f(x) \, dx - \int_a^b g(x) \, dx \]

Notes

2. constant multiple rule
3. integral of sum is sum of integrals
4. integral of difference is difference of integrals.

Property 1 has a simple interpretation

\[\langle \ldots a \ldots b \ldots, \ldots c \ldots, \text{function } c, \text{ area } = c(b - a) \rangle \]

Example. Evaluate \[I = \int_0^3 (5 - 2x) \, dx \]

use the difference rule

\[I = \int_0^3 5 \, dx - \int_0^3 2x \, dx \]

property \#1 and constant multiple rule

\[= 5(3 - 0) - 2 \int_0^3 x \, dx \]

rule that \(\int_a^b x \, dx = \frac{1}{2}(b^2 - a^2) \)

\[= 15 - 2 \left(\frac{1}{2} \right)(9 - 0) \]

\[= 6 \]

Addition Property wrt Interval of Integration

For any real nos. \(a, b \) and \(c \)

5. \[\int_a^c f(x) \, dx + \int_c^b f(x) \, dx = \int_a^b f(x) \, dx \]

Picture for \(a < c < b \) and \(f \geq 0 \)

\[\langle \ldots a \ldots c \ldots b \ldots, x^-, \ldots, f, A, A_1, A_2 \rangle \]
Example: Evaluate

\[I = \int_3^4 f(x)dx + \int_1^3 f(x)dx + \int_1^4 f(x)dx \]

by addition property reverse limits

so \(I = 0 \)

Comparison Property of Integrals

6. If \(f(x) \geq 0 \) and \(b > a \) then

\[\int_a^b f(x)dx \geq 0 \]

7. If \(f(x) \geq g(x) \) and \(b > a \) then

\[\int_a^b f(x)dx \geq \int_a^b g(x)dx \]

8. If \(m \leq f(x) \leq M \) then

\[m(b - a) \leq \int_a^b f(x)dx \leq M(b - a) \]

Example. Show that

\[\int_2^5 \sqrt{x^2 - 1} \, dx \leq 10.5 \]

without evaluating the integral.

Solution. For \(x > 1 \):

\[\sqrt{x^2 - 1} < \sqrt{x^2} = x \]

Then by property 7:

\[\int_2^5 \sqrt{1 - x^2} \, dx \leq \int_2^5 x \, dx \]

\[= \frac{1}{2}(5^2 - 2^2) = \frac{1}{2}(25 - 4) = \frac{21}{2} \]

\[= 10.5 \]
Example. Show that
\[\frac{\pi}{6} < \int_{0}^{\pi/3} \cos(x) \, dx < \frac{\pi}{3} \]
without evaluating the integral.

\[\langle 0 \cdots \frac{\pi}{3} \cdots \frac{\pi}{2} \cdots x, 0 \cdots 1 \cdots y, \cos(x) \rangle \]

on the interval \([0, \pi/3]\)
\[\frac{1}{2} \leq \cos(x) \leq 1 \]
by property 8
\[\frac{1}{2} \left(\frac{\pi}{3} - 0 \right) < \int_{0}^{\pi/3} \cos(x) \, dx < 1 \left(\frac{\pi}{3} - 0 \right) \]
which gives the result we are trying to show ■

§5.3 The Evaluation Theorem
If \(f \) is continuous on the closed interval \([a, b]\), then
\[\int_{a}^{b} f(x) \, dx = F(b) - F(a) \]
where \(F \) is any antiderivative of \(f \), that is \(F' = f \).

Example. \(\int_{a}^{b} x \, dx = F(b) - F(a) \)
where \(F(x) = \frac{1}{2} x^2 + C \).
\[F(b) = \frac{1}{2} b^2 + C, \quad F(a) = \frac{1}{2} a^2 + C \]
\[\int_{a}^{b} x \, dx = \frac{1}{2} (b^2 - a^2) \]
Notice that the constant of integration \(C \) cancels. We may as well set \(C = 0 \). ■

Example. \(\int_{0}^{1} x^2 \, dx = F(1) - F(0) \)
where \(F(x) = \frac{1}{3} x^3 \)
\[F(1) = \frac{1}{3}, \quad F(0) = 0 \]
\[\int_{0}^{1} x^2 \, dx = \frac{1}{3} \]
■
Example. The distance problem.

v velocity
s position
distance traveled
a starting time
b ending time

we have seen previously

\[d = \int_a^b v(t) \, dt \]

recall \(s'(t) = v(t) \)

By the Evaluation Theorem

\[\int_a^b v(t) \, dt = s(b) - s(a) \] = distance traveled! \[\blacksquare\]

Proof of the Evaluation Theorem.

Partition \([a, b]\) into \(n\) subintervals of equal width.

\[\langle ... a \ldots b \ldots x_-, x_0, x_1, x_2, \ldots, x_{n-1}, x_n \rangle \]

width of each subinterval \(\Delta x = (b - a)/n \)

Let \(F \) be any antiderivative of \(f \).

Write \(F(b) - F(a) \) as a telescoping sum

\[F(b) - F(a) = F(x_n) - F(x_0) \]

\[= (F(x_n) - F(x_{n-1})) + (F(x_{n-1}) - F(x_{n-2})) + \]

\[... + (F(x_2) - F(x_1)) + (F(x_1) - F(x_0)) \]

Apply the Mean Value Theorem to \(F \) on an arbitrary
subinterval \(i: [x_{i-1}, x_i] \)

\[F(x_i) - F(x_{i-1}) = F'(x^*_i)(x_i - x_{i-1}) = f(x^*_i)\Delta x, \]
where x_i^* is some no. on the interval (x_{i-1}, x_i).

Then

$$F(b) - F(a) = f(x_n^*)\Delta x + f(x_{n-1}^*)\Delta x + \cdots + f(x_1^*)\Delta x$$

$$= \sum_{i=1}^{n} f(x_i^*)\Delta x$$

the last expression is a Riemann sum!

Let $n \to \infty$

$$\lim_{n \to \infty} F(b) - F(a) = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i^*)\Delta x$$

$F(b) - F(a)$ does not depend on n and the limit on the right is the integral. Therefore we get

$$F(b) - F(a) = \int_a^b f(x)dx$$

\[\blacksquare\]

Note $F(b) - F(a) = F(x)|_a^b$

Then the Evaluation Theorem may be written

$$\int_a^b f(x)dx = F(x)|_a^b$$

where F is any antiderivative of F.

Example. Evaluate $\int_0^1 x^{3/7} dx$

For $f(x) = x^n$, an antiderivative of f is

$$F(x) = \frac{1}{n+1}x^{n+1}$$

For $n = 3/7$

$$F(x) = \frac{x^{10}}{10}$$

Thus

$$\int_0^1 x^{3/7} dx = \frac{7}{10} x^{10/7} \bigg|_0^1$$

$$= \frac{7}{10} (1)^{10/7} - \frac{7}{10} (0)^{10/7}$$

$$= \frac{7}{10} - 0$$

$$= \frac{7}{10} \blacksquare$$
Example. Evaluate $I = \int_{0}^{\pi/4} \sec^2(\theta) d\theta$

Recall $\frac{d}{d\theta} \tan(\theta) = \sec^2(\theta)$

Then $I = \tan(\theta) \big|_{0}^{\pi/4} = \tan\left(\frac{\pi}{4}\right) - \tan(0) = 1$

The Evaluation Theorem in Applications

Interpret derivatives as rates of change

s position v velocity

Q electric charge $I = \frac{dQ}{dt}$ electric current

$y = h(x)$ height of trail $\frac{dy}{dx} = h'(x)$ slope of trail

x miles from start

rewrite the evaluation theorem in terms of rate of change

Net Change Theorem
The integral of a rate of change is a net change

\[\int_{a}^{b} F'(x)dx = F(b) - F(a) \]

where $F'(x)$ is the rate of change of F wrt x and $F(b) - F(a)$ is the net change in F.

Note that the word “net” connotes that there can be positive and negative contributions to the rate of change

Examples.

The integral of velocity gives the net change in position

\[\int_{a}^{b} v(t)dt = s(b) - s(a) \]

The integral of current gives the net charge passing through a wire

\[\int_{a}^{b} I(t)dt = Q(b) - Q(a) \]

The integral of the slope of trail gives the net change in height of trail

\[\int_{a}^{b} h'(x)dx = h(b) - h(a) \]
Particle Motion (back and forth) along a straight line

\[s(t) \] \quad \text{position at time } t \\
\[v(t) \] \quad \text{velocity at time } t \\
\[|v(t)| \] \quad \text{speed at time } t

Consider the following particle path

\[\langle 0 \ldots 4 \ldots s-, \ t_1 \text{ at } 0, \ t_2 \text{ at } 4, \ t_3 \text{ at } 3 \rangle \]

the particle’s displacement (distance traveled)

\[s(t_3) - s(t_1) = 3 = \int_{t_1}^{t_3} v(t) \, dt \]

the total distance the particle travels

\[5 = 4 + 1 = \int_{t_1}^{t_3} |v(t)| \, dt = \int_{t_1}^{t_2} v(t) \, dt + \int_{t_2}^{t_3} (-v(t)) \, dt \]

Example. The velocity function for a particle moving along a line is

\[v(t) = 4 - 2t \] \quad \text{meters/sec}

Find (a) the displacement and (b) the total distance traveled over the time interval

\[0 \leq t \leq 3 \text{ seconds} \]

(a) \[\int_{0}^{3} v(t) \, dt = \int_{0}^{3} (4 - 2t) \, dt \]
\[= 4t - t^2 \bigg|_{0}^{3} \]
\[= (12 - 9) - (0 - 0) \]
\[= 3 \text{ meters} \]

(b) \[\int_{0}^{3} |v(t)| \, dt = \int_{0}^{2} v(t) \, dt + \int_{2}^{3} (-v(t)) \, dt \]
\[= \int_{0}^{2} (4 - 2t) \, dt + \int_{2}^{3} (2t - 4) \, dt \]
\[= (4t - t^2) \bigg|_{0}^{2} + (t^2 - 4t) \bigg|_{2}^{3} \]
\[= ((8 - 4) - (0 - 0)) + ((9 - 12) - (4 - 8)) \]
\[= (4 - 0) + ((-3) - (-4)) \]
\[= 4 + 1 = 5 \text{ meters} \]
Indefinite Integrals

The symbol $$\int f(x)\,dx$$

is called the **indefinite integral** and means the general antiderivative of $$f(x)$$.

If $$F$$ is any antiderivative of $$f$$ then

$$\int f(x)\,dx = F(x) + C$$

$$C$$ is the **constant of integration**.

Antiderivative Formulas using indefinite integral notation

Let $$k$$ be a constant and let $$f$$ and $$g$$ be functions

$$\int k\,dx = kx + C$$

$$\int k\ f(x)\,dx = k\int f(x)\,dx + C$$

$$\int f(x) + g(x)\,dx = \int f(x)\,dx + \int g(x)\,dx$$

$$\int f(x) - g(x)\,dx = \int f(x)\,dx - \int g(x)\,dx$$

we also have formulas for specific functions

$$\int x^n\,dx = \frac{1}{n+1}x^{n+1} + C$$ \quad valid for $$n \neq -1$$

$$\int \frac{1}{x}\,dx = \ln|x| + C$$

$$\int e^x\,dx = e^x + C$$

$$\int a^x\,dx = \frac{a^x}{\ln(a)} + C$$

$$\int \sin(x)\,dx = -\cos(x) + C$$

$$\int \cos(x)\,dx = \sin^{-1}(x) + C$$

$$\int \sec^2(x)\,dx = \tan(x) + C$$

$$\int \sec(x)\tan(x)\,dx = \sec(x) + C$$

$$\int \frac{1}{1 + x^2}\,dx = \tan^{-1}(x) + C$$

$$\int \frac{1}{\sqrt{1 - x^2}}\,dx = \sin^{-1}(x) + C$$
Example. Find the indefinite integral
\[I = \int (\cos(x) - 2\sin(x)) \, dx \]
solution
\[I = \int \cos(x) \, dx - \int 2 \sin(x) \, dx \]
\[= \int \cos(x) \, dx - 2 \int \sin(x) \, dx \]
\[= \sin(x) + 2 \cos(x) + C \quad \blacksquare \]

Example. Find the indefinite integral
\[I = \int \left(\frac{1}{5x} + 3 \sec(x) \tan(x) \right) \, dx \]
solution
\[I = \int \frac{1}{5x} \, dx + \int 3 \sec(x) \tan(x) \, dx \]
\[= \frac{1}{5} \int \frac{1}{x} \, dx + 3 \int \sec(x) \tan(x) \, dx \]
\[= \frac{1}{5} \ln |x| + 3 \sec(x) + C \quad \blacksquare \]

§5.4 The Fundamental Theorem of Calculus

The “Area so far” function
\[\langle \ldots a \ldots x \ldots b \ldots t \ldots, 0 \ldots, f(t), \text{area } g(x) \text{ from } a \text{ to } x \rangle \]

\[g(x) = \int_{a}^{x} f(t) \, dt \]
If \(f > 0 \), \(g \) is the “area so far” under \(f \)

Example. Let \(a = 1 \) and \(f(t) = \frac{1}{t} \).
\[g(x) = \int_{1}^{x} \frac{1}{t} \, dt \]
\[= \ln |t| \big|_{1}^{x} \]
\[= \ln(x) - \ln(1) \]
\[= \ln(x) \quad \text{where } x > 0 \]

Notice that
\[g'(x) = \frac{1}{x} = f(x) \quad \text{This is not a coincidence!} \quad \blacksquare \]
The Fundamental Theorem of Calculus, part 1 (FTC 1)

If f is continuous on $[a, b]$, then the function g defined by

$$g(x) = \int_a^x f(t) \, dt$$

is an antiderivative of f, that is

$$g'(x) = f(x) \quad \text{for} \quad a \leq x \leq b.$$

Plausibility Argument. Why is $g'(x) = f(x)$?

From the graph

$$g(x + h) - g(x) \approx f(x)h$$

this becomes more accurate as $h \to 0$

$$g'(x) = \lim_{h \to 0} \frac{f(x)h + \text{small correction}}{h} = f(x)$$

Our text gives a rigorous proof.

Using Leibniz notation, the FTC 1 becomes

$$\frac{d}{dx} \int_a^x f(t) \, dt = f(x)$$

Example. Find the derivative of

$$g(x) = \int_{-1}^x \sqrt{t^3 + 1} \, dt$$

Solution $f(t) = \sqrt{t^3 + 1}$ is continuous on $[-1, \infty)$.

$$g'(x) = \sqrt{x^3 + 1}$$
Example. Find the derivative of

$$y = \int_{x^2}^{\pi} \frac{\sin(t)}{t} \, dt$$

Solution. $f(t) = \frac{\sin(t)}{t}$ is continuous for $t > 0$.

Reverse the limits of integration.

$$y = -\int_{\pi}^{x^2} \frac{\sin(t)}{t} \, dt$$

$$= -\int_{\pi}^{u} \frac{\sin(t)}{t} \, dt$$

where $u = x^2$. By the FTC 1

$$\frac{dy}{du} = -\frac{\sin(u)}{u}$$

By the chain rule

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$

$$= -\frac{\sin(u)}{u} \cdot \frac{du}{dx}$$

$$= -\frac{\sin(x^2)}{x^2} \cdot 2x$$

$$= -\frac{2}{x} \sin(x^2) \quad \blacksquare$$

The Fundamental Theorem of Calculus (FTC)

Suppose f is continuous on $[a, b]$

1. $\frac{d}{dx} \int_{a}^{x} f(t) \, dt = f(x)$

2. $\int_{a}^{b} f(x) \, dx = F(b) - F(a)$

where F is any antiderivative of f. This is the Evaluation Theorem!

Part 2 can be rewritten

$$\int_{a}^{b} F'(x) \, dx = F(b) - F(a)$$

Roughly speaking, the FTC says that differentiation and integration are inverse processes!

Recall the Mean Value Theorem:

If f is continuous on $[a, b]$ and differentiable on (a, b), then there is a no. c in (a, b) such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$
Mean Value Theorem for Integrals

If f is continuous on $[a, b]$, then there is a no. c in (a, b) such that

$$f(c) = \frac{\int_a^b f(x)dx}{b - a}$$

Proof. Let F be the “Area so far” function

$$F(x) = \int_a^x f(t)dt$$

$F'(x) = f(x)$ by FTC 1.

F is continuous on $[a, b]$ and differentiable on (a, b).

By the Mean Value Theorem, there is a no. c in $[a, b]$ such that

$$F'(c) = \frac{F(b) - F(a)}{b - a}$$

By FTC 2 (the Evaluation Theorem), this becomes

$$f(c) = \frac{\int_a^b f(x)dx}{b - a}$$

which is what we want to prove! ■

Geometrical Interpretation

$\langle ... \ a \ ... \ b \ ... \ x, ..., f \rangle$ \quad \langle \text{add } c, f(c), \text{ rectangle} \rangle$

Note:

$$\int_a^b f(x)dx = f(c)(b - a)$$

area under curve = area of rectangle

is the average value of f on $[a, b]$
Example

a) Find the average value of $f(x) = x^3$ on $[0,1]$

$$f_{\text{ave}} = \frac{1}{1-0} \int_0^1 x^3 \, dx = \frac{1}{4} x^4 \bigg|_0^1 = \frac{1}{4}$$

b) Find c such that $f_{\text{ave}} = f(c)$

$$f(c) = c^3 = \frac{1}{4}$$

$$c = \left(\frac{1}{4}\right)^{\frac{1}{3}} \approx 0.63$$

\blacksquare

STOP §5.5 The Substitution Rule

Differential Notation revisited

Consider $y = f(x)$. By the definition of derivative:

$$\frac{dy}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

this is not exactly a ratio...

Let dx be any real no. and define

$$dy = f'(x) \, dx$$

another real no. This allows us to interpret the left hand side of

$$\frac{dy}{dx} = f'(x)$$

as a true ratio.

Practice. Let's write $u = g(x)$. Then $du = g'(x) \, dx$

Let $u = x^2$. Then $du = 2x \, dx$

?? Let $u = \sqrt{x}$. Then $du =$

?? Let $u = \ln |x|$. Then $du =$

?? Let $u = \tan \theta$. Then $du =$
Integration by Substitution

Recall the indefinite integral
\[\int F'(x) \, dx = F(x) + C \]

Recall the chain rule
\[
F'(x) = f'(g(x)) \cdot g'(x)
\]
Thus
\[\int f'(g(x))g'(x) \, dx = f(g(x)) + C \]

Example. Let \(F(x) = \sin(x^2) \)
\[
F'(x) = \cos(x^2) \cdot 2x
\]
so \(\int \cos(x^2)2x \, dx = \sin(x^2) + C \)

This is taking the chain rule backwards!

How to recognize \(f'(g(x)) \cdot g'(x) \) in an integrand?

Trick – “Integration by Substitution”

Suppose you have
\[I = \int f'(g(x))g'(x) \, dx \]
but you might not recognize the form.

Guess the inner function of the composition
\(u = g(x) \)
form the differential
\[du = g'(x) \, dx \]
substitute into \(I \)
\[I = \int f'(u) \, du \]
\[= f(u) + C \]
\[= f(g(x)) + C \]
Example. Evaluate

\[I = \int 2x \cos(x^2) \, dx \]

guess the inner function

\[u = x^2 \]

form the differential

\[du = 2x \, dx \]

substitute into \(I \)

\[I = \int \cos(u) \, du \]

= \sin(u) + C

= \sin(x^2) + C \quad \blacksquare

Example. Evaluate

\[I = \int \sqrt{3x + 4} \, dx \]

guess the inner function

\[u = 3x + 4 \]

form the differential

\[du = 3 \, dx \]

solve for \(dx \)

\[dx = \frac{1}{3} \, du \]

substitute into \(I \)

\[I = \int u^{1/2} \frac{1}{3} \, du \]

= \frac{1}{3} \cdot \frac{2}{3} u^{3/2} + C

= \frac{2}{9} (3x + 4)^{3/2} + C

can check by differentiation

\[\frac{d}{dx} \left(\frac{2}{9} (3x + 4)^{3/2} + C \right) = \frac{2}{9} \cdot \frac{3}{2} (3x + 4)^{1/2}(3) + 0 = (3x + 4)^{1/2} \]

\[\blacksquare \]
Example. Evaluate

\[I = \int \tan^2(x) \sec^2(x) \, dx \]

guess the inner function

\[u = \tan(x) \]

form the differential

\[du = \sec^2(x) \, dx \]

substitute into \(I \)

\[I = \int u^2 \, du = \frac{1}{3} u^3 + C = \frac{1}{3} \tan^3(x) + C \]

Example. Evaluate

\[I = \int \frac{x}{1 + x^4} \, dx \]

guess the inner function

\[u = x^2 \]

form the differential

\[du = 2x \, dx \]

solve for \(x \, dx \)

\[x \, dx = \frac{1}{2} \, du \]

substitute into \(I \)

\[I = \int \frac{1}{1 + u^2} \frac{1}{2} \, du = \frac{1}{2} \tan^{-1}(u) + C = \frac{1}{2} \tan^{-1}(x^2) + C \]
Evaluating Definite Integrals By Substitution

Recall the Fundamental Theorem of Calculus, part 2

\[\int_{a}^{b} F'(x) \, dx = F(b) - F(a) \]

Method I Find the indefinite integral by substitution and then apply the FTC, part 2.

Example. Evaluate

\[\int_{-1}^{0} \sqrt{3x + 4} \, dx \]

let

\[u = 3x + 4, \quad du = 3 \, dx, \quad \frac{1}{3} \, du = dx \]

then

\[
\int \sqrt{3x + 4} \, dx = \int u^{1/2} \cdot \frac{1}{3} \, du = \frac{1}{3} \cdot \frac{2}{3} u^{3/2} + C
\]

\[= \frac{2}{9} (3x + 4)^{3/2} + C \]

Now let \(F(x) = \frac{2}{9} (3x + 4) \). Then by FTC 1

\[
I = F(0) - F(-1)
\]

\[= \frac{2}{9} \cdot 4^{3/2} - \frac{2}{9} \cdot 1^{3/2} \]

\[= \frac{2}{9} (8 - 1) \]

\[= \frac{14}{9} \quad \blacksquare \]
Method II. Transform limits of integration while substituting and apply FTC 2.

This method is better once you get used to it because it involves less writing.

Example. Evaluate

\[I = \int_{-1}^{0} \sqrt{3x + 4} \, dx \]

Let

\[u = 3x + 4, \quad du = 3dx, \quad \frac{1}{3} du = dx \]

Also note that if \(x = -1 \) then \(u = 1 \)

if \(x = 0 \) then \(u = 4 \)

then

\[I = \int_{1}^{4} \frac{1}{3} \, du \]

\[= \frac{1}{3} \cdot \frac{2}{3} u^\frac{3}{2} \bigg|_{1}^{4} \]

\[= \frac{2}{9} \left(\frac{3}{2} - 1^\frac{3}{2} \right) \]

\[= \frac{2}{9} (8 - 1) = \frac{14}{9} \] ■

Example. Evaluate

\[I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \tan^2(x) \sec^2(x) \, dx \]

Let

\[u = \tan(x) \]

\[du = \sec^2(x) \, dx \]

Also note that if \(x = -\frac{\pi}{4} \) then \(u = -1 \)

if \(x = \frac{\pi}{4} \) then \(u = 1 \)

then

\[I = \int_{-1}^{1} u^2 \, du \]

\[= \frac{1}{3} u^3 \bigg|_{-1}^{1} \]

\[= \frac{1}{3} (1^3 - (-1)^3) \]

\[= \frac{2}{3} \] ■
Example. Evaluate

\[I = \int_{1}^{2} \frac{\cos \left(\frac{\pi}{x} \right)}{x^2} \, dx \]

Let \(u = \frac{\pi}{x} = \pi x^{-1}. \)

Then \(du = \pi (-x^{-2}) \, dx \) and \(-\frac{1}{\pi} \, du = x^{-2} \, dx.\)

If \(x = 1 \) then \(u = \pi \)
\[x = 2 \quad u = \frac{\pi}{2} \]
Then
\[I = \int_{\frac{\pi}{2}}^{\pi} \cos(u) \left(-\frac{1}{\pi} \, du \right) \]
\[= \frac{1}{\pi} \int_{\frac{\pi}{2}}^{\pi} \cos(u) \, du \]
\[= \frac{1}{\pi} \sin(u) \bigg|_{\frac{\pi}{2}}^{\pi} \]
\[= \frac{1}{\pi} \left(\sin(\pi) - \sin \left(\frac{\pi}{2} \right) \right) \]
\[= \frac{1}{\pi} \left(0 - 1 \right) \]
\[= -1/\pi \]

[\[\Box\]\]

Example. Evaluate

\[I = \int_{2}^{4} \frac{1}{x \ln(x)} \, dx \]

Let \(u = \ln(x). \)

Then \(du = \frac{1}{x} \, dx \)

If \(x = 2 \) then \(u = \ln 2 \)
\[x = 4 \quad u = \ln 4 = \ln 2^2 = 2 \ln 2 \]
Then
\[I = \int_{\ln 2}^{\ln 4} \frac{1}{u} \, du \]
\[= \ln u \bigg|_{\ln 2}^{\ln 4} \]
\[= \ln(\ln 4) - \ln(\ln 2) \]
\[= \ln(2 \ln 2) - \ln(\ln 2) \]
\[= \ln 2 + \ln(\ln 2) - \ln(\ln 2) \]
\[= \ln 2 \]

[\[\Box\]\]