Algorithmic Detection and Construction of N-matrices

Projesh Nath Choudhury* Michael J. Tsatsomeros†

April 27, 2020

Abstract

N-matrices are real $n \times n$ matrices all of whose principal minors are negative. We provide (i) an $O(2^n)$ test to detect whether or not a given matrix is an N-matrix, and (ii) a characterization of N-matrices, leading to the recursive construction of every N-matrix.

AMS Subject Classification: 15B48, 15A15, 15A23, 68Q15, 90C33.

Keywords. N-matrix, P-matrix, almost P-matrix, Principal submatrix, Principal minor, Schur complement.

*Department of Mathematics, Indian Institute of Science, Bengaluru, India (projeshnc@alumni.iitm.ac.in, projeshc@iisc.ac.in).
†Department of Mathematics and Statistics, Washington State University, Pullman, WA 99164, USA (tsat@wsu.edu).
1 Introduction and Motivation

This work concerns N-matrices, that is, real $n \times n$ matrices, $A \in \mathbb{R}^{n \times n}$, all of whose principal minors are negative.

In prior discussions of N-matrices, their resemblance to P-matrices, which are matrices all of whose principal minors are positive, invariably comes up first. Indeed, P-matrices are widely studied since they contain many classes of matrices, such as the positive definite matrices and the M-matrices; they find applications in mathematical programming, the study of univalence and complexity theory (see e.g., [1, 13]). N-matrices find similar applications and possess properties analogous to P-matrices; they were introduced in [10] and have been studied in [14] and [17].

Among the motivating factors for studying N-matrices is their connection to univalence (injectivity of differential maps in \mathbb{R}^n) and their role in the Linear Complementarity Problem. In addition, as it is evident in the existing theory of N-matrices and will be reinforced by the results herein, it is illuminating to identify and compare the effects of having signed principal minors in the two cases of N-matrices and P-matrices. There are similarities, distinctions, but also some unexpected connections between the two classes. Such instances will surface in our study of how to (i) detect N-matrices efficiently (Section 3), and (ii) construct all the N-matrices (Section 4). Some background material and basic properties of N-matrices are reviewed in Section 2, which will help us develop and appropriately frame the results. Matlab implementations of algorithms for the detection of N-matrices and P-matrices are included in Section 5 for the reader’s convenience.

2 Background, Notation and Context

For a positive integer n, let $\langle n \rangle = \{1, 2, \ldots, n\}$. For $\alpha \subseteq \langle n \rangle$, $|\alpha|$ denotes the cardinality of α and $\alpha^c = \langle n \rangle \setminus \alpha$. For $\alpha \subseteq \langle n \rangle$ with $|\alpha| = k$ and its elements arranged in ascending order, we let $x[\alpha]$ denote the vector in \mathbb{R}^k obtained from the entries of $x \in \mathbb{R}^n$ indexed by α. Moreover, we let $A[\alpha, \beta]$ denote the submatrix of $A \in \mathbb{R}^{n \times n}$ whose rows and columns are indexed by $\alpha, \beta \subseteq \langle n \rangle$, respectively; the elements of α, β are assumed to be in ascending order. When a row or column index set is empty, the corresponding submatrix is considered vacuous and by convention has determinant equal to 1. We abbreviate $A[\alpha, \alpha]$ by $A[\alpha]$ and refer to it as a principal submatrix of A and its determinant as a principal minor of A.

Given $A \in \mathbb{R}^{n \times n}$ and $\alpha \subseteq \langle n \rangle$ such that $A[\alpha]$ is invertible, $A/A[\alpha]$ denotes the
Schur complement of $A[\alpha]$ in A, that is,

$$
A/A[\alpha] = A[\overline{\alpha}] - A[\overline{\alpha}, \alpha]A[\alpha]^{-1}A[\alpha, \overline{\alpha}].
$$

Definition 2.1. Matrix $A = [a_{ij}] \in \mathbb{R}^{n \times n}$ is

- an *N-matrix* if $\det A[\alpha] < 0$ for all nonempty $\alpha \subseteq \langle n \rangle$;
- a *P-matrix* if $\det A[\alpha] > 0$ for all nonempty $\alpha \subseteq \langle n \rangle$;
- an *almost P-matrix* if $\det A[\alpha] > 0$ for all nonempty proper $\alpha \subseteq \langle n \rangle$ and $\det A < 0$.

We further classify an N-matrix $A \in \mathbb{R}^{n \times n}$ as being

- *of the first category* if there exist $i, j \in \langle n \rangle$ such that $a_{ij} > 0$; or
- *of the second category* if $a_{ij} < 0$ for all $i, j \in \langle n \rangle$.

For an array X, we denote $X \geq 0 \ (X \leq 0)$ to signify that all the entries of X are nonnegative (nonpositive). Similarly, $X > 0 \ (X < 0)$ means all the entries of X are positive (negative).

For reference and context needed in our further considerations, we gather below some analogous properties of N-matrices and P-matrices. First we recall two basic definitions:

For $A \in \mathbb{R}^{n \times n}$ and $q \in \mathbb{R}^n$, the *Linear Complementarity Problem*, LCP(A, q), is to find, if possible, $x \in \mathbb{R}^n$ such that

$$
x \geq 0, \quad y = Ax + q \geq 0 \quad \text{and} \quad x^Ty = 0.
$$

For details and background on the Linear Complementarity Problem, see [4].

Given a nonempty $\alpha \subseteq \langle n \rangle$ and provided that $A[\alpha]$ is invertible, the *Principal Pivot Transform* of $A \in \mathbb{R}^{n \times n}$ relative to α is defined as the matrix $\text{ppt} (A, \alpha)$ obtained from A by replacing

- $A[\alpha]$ by $A[\alpha]^{-1}$,
- $A[\alpha, \overline{\alpha}]$ by $-A[\alpha]^{-1}A[\alpha, \overline{\alpha}]$,
- $A[\overline{\alpha}, \alpha]$ by $A[\overline{\alpha}, \alpha]A[\alpha]^{-1}$
- $A[\overline{\alpha}]$ by $A/A[\alpha]$.

For its properties and details on the Principal Pivot Transform, see [19].

N-matrices:
• [N1] $A \in \mathbb{R}^{n \times n}$ is an N-matrix if and only if A^{-1} is an almost P-matrix [16].

• [N2] $A \in \mathbb{R}^{n \times n}$ is an N-matrix of the first category if and only if A satisfies the following conditions: A has at least one positive entry in each column, $LCP(A, q)$ has a unique solution for all $q \not\geq 0$, exactly three solutions for all $q > 0$, and at most two solutions for any other $q \in \mathbb{R}_+^n$ (nonnegative orthant) [15].

• [N3] $A \in \mathbb{R}^{n \times n}$ is an N-matrix of the second category if and only if $A < 0$ and for every $q > 0$, $LCP(A, q)$ has exactly 2 solutions [17].

• [N4] $A \in \mathbb{R}^{n \times n}$ is an N-matrix of the second category if and only if $A < 0$ and A does not reverse the sign of any nonzero, unsigned vector $x = [x_i] \in \mathbb{R}^n$; i.e., $(Ax)_i x_i \leq 0$ for all $i \in \langle n \rangle$ implies $x \geq 0$ or $x \leq 0$ [17].

• [N5] If $A \in \mathbb{R}^{n \times n}$ is an N-matrix, then $A/A[\alpha]$ is a P-matrix for all proper subsets α of $\langle n \rangle$ [18].

• [N6] Let $A \in \mathbb{R}^{n \times n}$ be an N-matrix, α be a proper subset of $\langle n \rangle$ and $B = \text{ppt}(A, \alpha)$. Then $\det(B[\alpha]) < 0$ and all other principal minors of B are positive [18].

• [N7] N-matrices have exactly one real negative eigenvalue [17].

P-matrices: See [13, Chapter 3] or [20] for a treatment of P-matrices.

• [P1] $A \in \mathbb{R}^{n \times n}$ is a P-matrix if and only if A^{-1} is a P-matrix.

• [P2] $A \in \mathbb{R}^{n \times n}$ is a P-matrix if and only if for every $q \in \mathbb{R}^n$, $LCP(A, q)$ has a unique solution.

• [P3] $A \in \mathbb{R}^{n \times n}$ is a P-matrix if and only if A does not reverse the sign of any nonzero vector $x = [x_i] \in \mathbb{R}^n$; i.e., $(Ax)_i x_i \leq 0$ for all $i \in \langle n \rangle$ implies $x = 0$.

• [P4] If $A \in \mathbb{R}^{n \times n}$ is a P-matrix, then $A/A[\alpha]$ is a P-matrix for all $\alpha \subseteq \langle n \rangle$.

• [P5] $A \in \mathbb{R}^{n \times n}$ is a P-matrix if and only if $\text{ppt}(A, \alpha)$ is a P-matrix for any (and thus all) $\alpha \subseteq \langle n \rangle$.

• [P6] P-matrices have no real negative eigenvalues.
3 Detecting N-matrices

The problem of detecting P-matrices is known to be co-NP-complete [5]. The computation of the principal minors of $A \in \mathbb{R}^{n \times n}$ via row reduction leads to an $O(n^3 2^n)$ effort. A more efficient, recursive algorithm to detect P-matrices of $O(2^n)$ time complexity is developed in [21] and is based on the following theorem.

Theorem 3.1. [21, Theorem 3.1] Let $A \in \mathbb{R}^{n \times n}$ and $\alpha \subseteq \langle n \rangle$ with $|\alpha| = 1$. Then A is a P-matrix if and only if $A[\alpha]$, $A[\bar{\alpha}]$ and $A/A[\alpha]$ are P-matrices.

We can extend the theorem above into the following characterization of N-matrices.

Theorem 3.2. Let $A \in \mathbb{R}^{n \times n}$ and $\alpha \subseteq \langle n \rangle$ with $|\alpha| = 1$. Then A is an N-matrix if and only if $A[\alpha]$, $A[\bar{\alpha}]$ are N-matrices and $A/A[\alpha]$ is a P-matrix.

Proof. Without loss of generality, let $\alpha = \{1\}$; otherwise, our considerations apply to a permutation similarity of A. Suppose that A is an N-matrix. By definition, $A[\alpha]$ and $A[\bar{\alpha}]$ are N-matrices. By [N5], $A/A[\alpha]$ is a P-matrix.

Conversely, suppose $A[\alpha]$ and $A[\bar{\alpha}]$ are N-matrices and $A/A[\alpha]$ is a P-matrix. The determinant of any principal submatrix of A without any entries from the first column is a principal minor of $A[\bar{\alpha}]$ and it is thus negative. Let B be any principal submatrix of A with entries from the first row of A. Then $C = A[\alpha]$ is a principal submatrix (diagonal entry) of B, and B/C is a principal submatrix of $A/A[\alpha]$. Thus $\det(B/C) > 0$ and so $\det(B) = A[\alpha] \det(B/C) < 0$. Hence A is an N-matrix.

Theorem 3.2 suggests the following recursive algorithm for detecting N-matrices.

ALGORITHM N(A)

1. Input $A = [a_{ij}] \in \mathbb{R}^{n \times n}$
2. If $a_{11} \geq 0$, output “A is not an N-matrix” stop
3. Compute A/a_{11}
4. If A/a_{11} is not P-matrix output “A is not an N-matrix” stop
5. Call $N(A[\{1\}])$
6. Output “A is an N-matrix”
A Matlab implementation of algorithm $N(A)$ is found in Section 5 (NTEST). The algorithm needed in (step 4) of NTEST to detect a P-matrix is based on Theorem 3.1 and also provided in Section 5 (PTEST).

4 Constructing All N-matrices

Examples of N-matrices, even of special structure and form, are not as easy to generate as is for examples of P-matrices. Some possibilities include the types of N-matrices considered in [7] and [11, 12], as well as the totally negative matrices (all minors are negative) in [2, 6]. In [3, Theorem 7.12], some necessary conditions are presented on the signs of the entries of an N-matrix of the first category.

In this section, using a recursion based on rank-one perturbations of N-matrices, we can reverse the steps of the recursive algorithm $N(A)$ that detects N-matrices and thus construct every N-matrix of either category. This approach is based on the following corollary of Theorem 3.2.

Corollary 4.1. Let $A \in \mathbb{R}^{n \times n}$ be an N-matrix of the second category, $a \in \mathbb{R}$ and let $x, y \in \mathbb{R}^n$. Then the following are equivalent:

(i) $U = \begin{bmatrix} A & x \\ y^T & a \end{bmatrix}$ is an N-matrix of the second category.

(ii) $a, x, y < 0$ and $A - \frac{1}{a} xy^T$ is a P-matrix.

Corollary 4.1 allows us to recursively construct $n \times n$ ($n \geq 2$) N-matrices of the second category as follows.

ALGORITHM NCON2

1. Choose $A_1 < 0$

2. For $i = 1 : n - 1$, given the $i \times i$ N-matrix of the second category A_i,

 (a) choose $a_i < 0$ and $x^{(i)}, y^{(i)} \in \mathbb{R}^i$ such that $x^{(i)}, y^{(i)} < 0$ and $A_i - \frac{1}{a_i} x^{(i)} y^{(i)T}$ is a P-matrix

 (b) construct the $(i + 1) \times (i + 1)$ matrix $A_{i+1} = \begin{bmatrix} A_i & x^{(i)} \\ y^{(i)T} & a_i \end{bmatrix}$

3. Output “$A = A_n$ is an N-matrix of the second category”
Theorem 4.1. Every matrix constructed by NCON2 is an N-matrix of the second category. Conversely, every N-matrix of the second category can be constructed by NCON2.

Proof. By Corollary 4.1, the sequence of matrices A_{i+1} ($i = 1, \ldots, n-1$) constructed by NCON2, including A_1, are N-matrices of the second category. To prove the converse, we proceed by induction on the order of matrices. The statement is trivial for $n = 1$. Let $n \geq 2$ and suppose that every N-matrix of the second category of order smaller than n can be constructed by NCON2. Let $A \in \mathbb{R}^{n \times n}$ be an N-matrix of the second category. Then A can be partitioned as

$$A = \begin{bmatrix} A_{n-1} & u \\ v^T & a \end{bmatrix},$$

where $A_{n-1} \in \mathbb{R}^{(n-1) \times (n-1)}$ is N-matrix of the second category, $u, v \in \mathbb{R}^{n-1}$ and $a \in \mathbb{R}$. By inductive hypothesis, A_{n-1} can be constructed by NCON2. Since A is N-matrix of the second category, by Corollary 4.1, $A_{n-1}/a = A_{n-1} - \frac{1}{a}uv^T$ is a P-matrix, $a, x, y < 0$. Thus $A_n = A$ can be constructed by NCON2 with the following choices:

$$a_{n-1} = a, \; x^{(n-1)} = u \quad \text{and} \quad y^{(n-1)} = v.$$

To extend our construction methodology to N-matrices of the first category, we recall the following results.

Theorem 4.2. [3, Theorem 7.12] Let $A = [a_{ij}]$ be an N-matrix of the first category. Then the following hold:

(i) All the entries of A are nonzero.

(ii) Each row and column of A has at least one positive entry.

(iii) Both a_{ij} and a_{ji} have the same sign.

(iv) If $a_{ij}, a_{ik} > 0$, then $a_{jk} < 0$.

The next result gives another necessary condition on the signs of the entries of an N-matrix of the first category.

Theorem 4.3. Let $A = [a_{ij}]$ be an N-matrix of the first category. If $a_{ij} > 0$ and $a_{ik} < 0$, then $a_{jk} > 0$.

Proof. Suppose that \(a_{ij} > 0 \) and \(a_{ik} < 0 \). Let \(a_{jk} < 0 \). By (ii) of Theorem 4.2, \(a_{ji} > 0 \) and \(a_{ki}, a_{kj} < 0 \). Consider the 3 \(\times \) 3 principal submatrix

\[
A[\{i, j, k\}] = \begin{bmatrix}
 a_{ii} & a_{ij} & a_{ik} \\
 a_{ji} & a_{jj} & a_{jk} \\
 a_{ki} & a_{kj} & a_{kk}
\end{bmatrix}.
\]

Then

\[
\det([\{i, j, k\}]) = a_{ii}(a_{jj}a_{kk} - a_{jk}a_{kj}) - a_{ij}(a_{ji}a_{kk} - a_{ki}a_{jk}) > 0,
\]

a contradiction. Hence \(a_{jk} > 0 \). \(\square \)

The following result gives a nice partition of N-matrix of the first category.

Theorem 4.4. [15, Theorem 4.3] Let \(A \) be an N-matrix of the first category. Then there exists a permutation matrix \(P \) such that

\[
PAP^T = \begin{bmatrix}
 A_{11} & A_{12} \\
 A_{21} & A_{22}
\end{bmatrix},
\]

(4.1)

where \(A_{11}, A_{22} < 0 \) are square matrices and \(A_{12}, A_{21} > 0 \).

By Theorem 4.4, in order to construct all N-matrices of the first category of size \(n \geq 2 \), it is sufficient to construct them in the form (4.1), where \(A_{11} \in \mathbb{R}^{k \times k} \) \((k < n)\). This can be achieved using the following corollary of Theorem 3.2.

Corollary 4.2. Let \(A = \begin{bmatrix}
 A_{11} & A_{12} \\
 A_{21} & A_{22}
\end{bmatrix} \in \mathbb{R}^{n \times n} \) \((n \geq 2)\) be an N-matrix, where

\(A_{11} \in \mathbb{R}^{k \times k} \) \((k \leq n)\), \(A_{22} \in \mathbb{R}^{(n-k) \times (n-k)} \) with \(A_{11}, A_{22} < 0 \) and \(A_{12}, A_{21} > 0 \). Let \(a \in \mathbb{R} \) and let \(x, y \in \mathbb{R}^n \). Then the following are equivalent:

(i) \(U = \begin{bmatrix}
 A \\
 y^T \\
 a
\end{bmatrix} \) is an N-matrix of the first category.

(ii) \(a < 0, A - \frac{1}{a}xy^T \) is a P-matrix and either \(x[\langle k \rangle], y[\langle k \rangle] > 0, x[\langle k \rangle], y[\langle k \rangle] < 0 \) or \(x[\langle k \rangle], y[\langle k \rangle] < 0, x[\langle k \rangle], y[\langle k \rangle] > 0 \).

Proof. Suppose that \(U = [u_{ij}] = \begin{bmatrix}
 A \\
 y^T \\
 a
\end{bmatrix} \) is an N-matrix of the first category and let \(A_{11} = [a_{ij}^{11}], A_{12} = [a_{ij}^{12}], A_{21} = [a_{ij}^{21}] \) and \(A_{22} = [a_{ij}^{22}] \). By Theorem 3.2, \(a < 0 \) and \(A - \frac{1}{a}xy^T \) is a P-matrix. Now we show that if \(x[\langle k \rangle] \) contains a positive entry then \(x[\langle k \rangle] > 0 \) and \(x[\langle k \rangle] < 0 \). Without loss of generality assume
that \(x_1 = u_{1n+1} > 0 \). Since \(u_{1i} = a_{11}^{ii} < 0 \) for \(i \in \langle k \rangle \setminus \{1\} \), by Theorem 4.3,
\(u_{i,n+1} = x_i > 0 \) for \(i \in \langle k \rangle \setminus \{1\} \). For \(j \in \langle k \rangle \), \(u_{j1} = a_{j,k+1}^{21} > 0 \). By (iv) of
Theorem 4.2, \(u_{jn+1} = x_j < 0 \) for \(j \in \langle k \rangle \). Thus \(x[\langle k \rangle] > 0 \) and \(x[\langle k \rangle] < 0 \). By (iii) of
Theorem 4.2, \(y[\langle k \rangle] > 0 \) and \(y[\langle k \rangle] < 0 \). Similarly one can show that if \(x[\langle k \rangle] \) contains a
negative entry then \(x[\langle k \rangle] > 0 \) and \(x[\langle k \rangle] < 0 \). By (iii)
of Theorem 4.2, \(y[\langle k \rangle] > 0 \) and \(y[\langle k \rangle] < 0 \). Similarly one can show that if \(x[\langle k \rangle] \) contains a
negative entry then \(x[\langle k \rangle], y[\langle k \rangle] > 0 \) and \(x[\langle k \rangle], y[\langle k \rangle] < 0 \).

The converse follows from Theorem 3.2.

Remark 4.1. Let \(U = \begin{bmatrix} A & x \\ y^T & a \end{bmatrix} \) be an N-matrix of the first category as defined in
Corollary 4.2 such that \(x[\langle k \rangle], y[\langle k \rangle] < 0 \) and \(x[\langle k \rangle], y[\langle k \rangle] > 0 \). Then interchanging
the \((k+1)\)-st and \((n+1)\)-st columns of \(U \) and subsequently interchanging the
\((k+1)\)-st and \((n+1)\)-st rows, we can write it in the form (4.1).

Using Corollary 4.2, we can now recursively construct \(n \times n \) \((n \geq 2)\) N-matrices
of the first category in the form (4.1) as follows.

ALGORITHM NCON1

1. Construct \(A_k = A_{11} \) using algorithm NCON2

2. For \(i = k : n - 1 \), given the \(i \times i \) matrix \(A_i \),

 (a) choose \(a_i < 0 \), \(x^{(i)}, y^{(i)} \in \mathbb{R}^i \) such that \(x[\langle k \rangle], y[\langle k \rangle] > 0 \), \(x[\langle k \rangle], y[\langle k \rangle] < 0 \), and \(A_i - \frac{1}{a_i} x^{(i)} y^{(i)^T} \) is a P-matrix

 (b) construct the \((i + 1) \times (i + 1)\) matrix \(A_{i+1} = \begin{bmatrix} A_i & x^{(i)} \\ y^{(i)^T} & a_i \end{bmatrix} \)

3. Output “\(A = A_n \) is an N-matrix of the first category”

Theorem 4.5. Every matrix constructed by NCON1 is an N-matrix of the first category. Conversely, every N-matrix of the first category can be constructed as a permutational similarity of a matrix constructed by NCON1.

Proof. By Corollary 4.2, the sequence of matrices \(A_{i+1} \) \((i = 1, \ldots, n - 1)\) constructed by NCON1, are N-matrices of the first category. We use induction on the order of matrices to prove the converse. The base case \(n = 2 \) is obvious. Let \(n > 2 \) and suppose that every N-matrix of the first category of order smaller than \(n \) can be constructed as a permutational similarity of a matrix constructed by NCON1. Let \(A \in \mathbb{R}^{n \times n} \) be an N-matrix of the first category. Then there exists a permutation matrix \(P \) such that
\[PAP^T = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}, \]

where \(A_{11} \in \mathbb{R}^{k \times k} (k < n), A_{22} \in \mathbb{R}^{(n-k) \times (n-k)} \) with \(A_{11}, A_{22} < 0 \) and \(A_{12}, A_{21} > 0 \).

Let \[\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} A_{n-1} & u \\ v & a \end{bmatrix}, \]

where \(A_{n-1} \in \mathbb{R}^{(n-1) \times (n-1)} \) is N-matrix, \(a < 0 \), \(u, v \in \mathbb{R}^{n-1} \) with \(u[k], v[k] > 0 \) and \(u[k], v[k] < 0 \). Now, either \(A_{n-1} < 0 \) or \(A_{n-1} \) is of the form (4.1). By inductive hypothesis, \(A_{n-1} \) can be constructed using \textbf{NCON1}. Since \(A \) is N-matrix of the first category, by Corollary 4.2, \(A_{n-1}/a = A_{n-1} - \frac{1}{a} uv^T \) is a P-matrix. Thus \(A_n = PAP^T \) can be constructed by \textbf{NCON1} with the following choices:

\[a_{n-1} = a, \quad x^{(n-1)} = u \text{ and } y^{(n-1)} = v. \]

\[\Box \]

\textbf{Remark 4.2.}

(1) The implementation of step 2(a) in algorithms \textbf{NCON1} and \textbf{NCON2} can be done via random choice of the appropriately signed vectors \(x^{(i)} \) and \(y^{(i)} \) and judicious choice of the diagonal entries \(a_i \). The process of choosing \(a_i \) so that \(A_i - \frac{1}{a_i} x^{(i)} y^{(i)T} \) is a P-matrix is developed and its effects explained in the recursive construction of all P-matrices presented in [22, Section 4].

(2) In light of [N1] in Section 2, Algorithms \textbf{NCON1} and \textbf{NCON2} may also be viewed as methods to construct almost P-matrices via inversion.

We proceed with two illustrative examples of N-matrices constructed using \textbf{NCON1} and \textbf{NCON2}.

\textbf{Example 4.1.} We construct \(3 \times 3 \) N-matrix of the first category. Let \(A_1 = -1, a_1 = -1, x^{(1)} = [2] \text{ and } y^{(1)} = [2] \). Then \(A_1 - \frac{1}{a_1} x^{(1)} y^{(1)T} = [3] \) is a P-matrix. By \textbf{NCON1}, \(A_2 = \begin{bmatrix} -1 & 2 \\ 2 & -1 \end{bmatrix} \) is N-matrix of the first category. Now, let \(a_2 = -1, x^{(2)} = [2 \ -1]^T \text{ and } y^{(2)} = [2 \ -2]^T \). Then \(A_2 - \frac{1}{a_2} x^{(2)} y^{(2)T} = \begin{bmatrix} 3 & -2 \\ 0 & 1 \end{bmatrix} \) is a P-matrix. Again, by \textbf{NCON1}, \(A_3 = \begin{bmatrix} -1 & 2 & 2 \\ 2 & -1 & -1 \\ 2 & -2 & -1 \end{bmatrix} \) is N-matrix of the first category.
Example 4.2. In this example, we construct a 3×3 N-matrix of the second category by NCON2. Let $A_1 = -1, a_1 = -1, x^{(1)} = [-1]$ and $y^{(1)} = [-2]$. Then $A_1 - \frac{1}{a_1} x^{(1)} y^{(1)}^T = [1]$ is a P-matrix. By NCON2, $A_2 = \begin{bmatrix} -1 & -1 \\ -2 & -1 \end{bmatrix}$ is N-matrix of the second category. Now, we take $a_2 = -1, x^{(2)} = [-2, -1]^T$ and $y^{(2)} = [-3, -2]^T$. Then $A_2 - \frac{1}{a_2} x^{(2)} y^{(2)}^T = \begin{bmatrix} 5 & 3 \\ 1 & 1 \end{bmatrix}$ is a P-matrix. Hence, by NCON2, $A_3 = \begin{bmatrix} -1 & -1 & -2 \\ -2 & -1 & -1 \\ -3 & -2 & -1 \end{bmatrix}$ is N-matrix of the second category.

5 NTEST and PTEST

We include Matlab code for the detection of P-matrices and N-matrices.

PTEST (detects P-matrices)

function [r] = ptest(A)
% Return r=1 if 'A' is a P-matrix (r=0 otherwise).

n = length(A);
if ~((A(1,1)>0), r = 0;
elseif n==1, r = 1;
else
 b = A(2:n,2:n);
 d = A(2:n,1)/A(1,1);
 c = b - d*A(1,2:n);
 r = ptest(b) & ptest(c);
end

NTEST (detects N-matrices)

function [r] = ntest(A)
% Return r=1 if 'A' is a N-matrix (r=0 otherwise).

n = length(A);
if ~((A(1,1)<0), r = 0;
elseif n==1, r = 1;
else
 b = A(2:n,2:n);
 d = A(2:n,1)/A(1,1);
 c = b - d*A(1,2:n);
 r = ntest(b) & ptest(c);
Note that the time complexity of PTEST is $O(2^n)$ [21], and so this must also be the case for NTEST as the same binary tree of matrices (of order reduced by 1) is being recursively created by the two algorithms.

Acknowledgements
The first author was partially supported by (NPDF) the National Post-Doctoral Fellowship PDF/2019/000275, SERB (Govt. of India) and by the NBHM Post-Doctoral Fellowship 0204/11/R&D-II/6437, DAE (Govt. of India). The second author was supported by a Scheme for Promotion of Academic and Research Collaboration (SPARC) grant No. P1303, SERB (Govt. of India). The first author thanks the Department of Mathematics, IIT Madras, for the hospitality during his visit in December 2019, when a part of this work was carried out.

References

