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Abstract. We propose a new variational model to denoise an image corrupted by Poisson noise. Like the ROF
model described in [1] and [2], the new model uses total-variation regularization, which preserves edges. Unlike
the ROF model, our model uses a data-fidelity term that is suitable for Poisson noise. The result is that the strength
of the regularization is signal dependent, precisely like Poisson noise. Noise of varying scales will be removed by
our model, while preserving low-contrast features in regions of low intensity.
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1. Introduction

An important task of mathematical image processing is
image denoising. The general idea is to regard a noisy
image f as being obtained by corrupting a noiseless
image u; given a model for the noise corruption, the
desired image u is a solution of the corresponding in-
verse problem.

Many algorithms are in use for reconstructing u
from f . Since the inverse problem is generally ill-
posed, most denoising procedures employ some sort
of regularization. A very successful algorithm is that
of Rudin, Osher, and Fatemi [1], which uses total-
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variation regularization. The ROF model regards u
as the solution to a variational problem, to minimize
the functional

F(u) :=
∫

�

|∇u| + λ

2

∫
�

| f − u|2, (1)

where � is the image domain and λ is a parameter to
be chosen. The first term of (1) is a regularization term,
the second a data-fidelity term. Minimizing F(u) has
the effect of diminishing variation in u, while keep-
ing u close to the data f . The size of the parameter λ

determines the relative importance of the two terms.
Like many denoising models, the ROF model is

most appropriate for signal independent, additive
Gaussian noise. See [3] for an explanation of this
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in the context of Bayesian statistics. However, many
important data contain noise that is signal dependent,
and obeys a Poisson distribution. A familiar example
is that of radiography. The signal in a radiograph
is determined by photon counting statistics and is
often described as particle-limited, emphasizing the
quantized and non-Gaussian nature of the signal.
Removing noise of this type is a more difficult
problem. Besbeas et al. [4] review and demonstrate
wavelet shrinkage methods from the now classical
method of Donoho [5] to Bayesian methods of
Kolaczyk [6] and Timmermann and Novak [7]. These
methods rely on the assumption that the underlying
intensity function is accurately described by relatively
few wavelet expansion coefficients. Kervrann and
Trubuil [8] employ an adaptive windowing approach
that assumes locally piecewise constant intensity of
constant noise variance. The method also performs
well at discontinuity preservation. Jonsson, Huang,
and Chan [9] use total variation to regularize positron
emission tomography in the presence of Poisson noise,
and use a fidelity term similar to what we use below.

In this paper, we propose a variational, total-
variation regularized denoising model along the lines
of ROF, but modified for use with Poisson noise. We
will see in the next section that the effect of this model
is that of having a spatially varying regularization pa-
rameter. Vanzella, Pellegrino, and Torre [10] adopt
a self-adapting parameter approach in the context of
Mumford-Shah regularization. Wong and Guan [11]
use a neural network approach in linear image filter-
ing to learn the appropriate parameter values from a
training set. Reeves [12] estimates the local parameter
values from each iterate in a reconstruction process for
use with Laplacian filtering, assuming locally constant
noise variance. Wu, Wang, and Wang [13] estimate
both the parameter values and the linear regularization
operator. These methods all require separate computa-
tions be made to estimate parameter values. In our case,
the spatially-varying parameter is a consequence of us-
ing the data fidelity term that matches the probabilistic
noise model (see derivation below). The self-adaptation
occurs automatically in the course of solving a single
unconstrained minimization problem.

2. Description of the Proposed Model

In what follows, we assume that f is a given grayscale
image defined on �, an bounded, open subset of R2,
with Lipschitz boundary ∂�. Usually, � is a rectangle
in the plane. We assume f is bounded and positive.

Where convenient below, we regard f as integer val-
ued, but this will ultimately be unnecessary.

Recall the Poisson distribution with mean and stan-
dard deviation μ:

Pμ(n) = e−μμn

n!
, n ≥ 0. (2)

Our discussion follows well-known lines for formu-
lating variational problems using Bayes’s Law. See [3]
for an example with the ROF model.

We wish to determine the image u that is most likely
given the observed image f . Bayes’s Law says that

P(u | f ) = P( f | u)P(u)

P( f )
. (3)

Thus, we wish to maximize P( f |u)P(u). Assuming
Poisson noise, for each x ∈ � we have

P( f (x)|u) = Pu(x)( f (x)) = e−u(x)u(x) f (x)

f (x)!
(4)

Now we assume that the region � has been pixellated,
and that the values of f at the pixels {xi } are indepen-
dent. Then

P( f |u) =
∏

i

e−u(xi )u(xi )
f (xi )

f (xi )!
. (5)

The total-variation regularization comes from our
choice of prior distribution:

P(u) = exp

(
−β

∫
�

|∇u|
)

, (6)

where β is a regularization paramter.
Instead of maximizing P( f |u)P(u), we minimize

− log(P( f |u)P(u)). The result is that we seek a mini-
mizer of∑

i

(u(xi ) − f (xi ) log u(xi )) + β

∫
�

|∇u|. (7)

We regard this as a discrete approximation of the func-
tional

E(u) :=
∫

�

(u − f log u) + β

∫
�

|∇u|. (8)

The functional E is defined on the set of u ∈ BV (�)
such that log u ∈ L1(�); in particular, u must be posi-
tive almost everywhere.

The Euler-Lagrange equation for minimizing E(u)
is

0=div

( ∇u

|∇u|
)

+ 1

βu
( f −u), with

∂u

∂�n =0 on ∂�.

(9)
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Figure 1. Circles image with frame. Image brightness has been adjusted for display, to allow the frame to be visible.

Figure 2. (a) Circles image with Poisson noise. (b) ROF denoised image. The frame is not well preserved. (c) ROF denoised image with

decreased regularization strength. The frame is preserved, but the noise in the higher-intensity regions remains. (d) Image denoised with

Poisson-modified total variation. Noise is removed at all scales, while preserving the frame.
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Compare this with the Euler-Lagrange equation for
minimizing the ROF functional (1),

0=div

( ∇u

|∇u|
)

+λ( f − u), with
∂u

∂�n =0 on ∂�.

(10)

Notice that Eq. (9) is similar to Eq. (10), but with a
variable λ = 1

βu , which depends on the reconstructed
image u. This local variation of the regularization pa-
rameter is better suited for Poisson noise because the
expected noise increases with image intensity. Decreas-
ing the value of the regularization parameter increases
the denoising effect of the regularization term in the
functional. We thus have a model that is similar to ROF
but with a self-adjusting parameter.

3. Existence and Uniqueness

Next, we show existence and uniqueness of the mini-
mizer for the model (8).

Theorem 1. Let � be a bounded, open subset of R2

with Lipschitz boundary. Let f be a positive, bounded
function. For u ∈ BV (�) such that log u ∈ L1(�),
let J (u) = ∫

�
(u − f log(u)), T V (u) = ∫

�
|∇u|, E =

βT V + J . Then E(u) has a unique minimizer.

Proof: First, J is bounded below by J ( f ), so E is
bounded below. Thus we can choose a minimizing se-
quence {un} for E . Then TV(un) is bounded, as is J (un).
By Jensen’s inequality,

J (un) ≥ ‖un‖1 − ‖ f ‖∞ log ‖un‖1, (11)

so ‖un‖1 is bounded as well. This and the bounded-
ness of TV(un) mean that {un} is a bounded sequence
in the space BV (�). By the compactness of L1 in BV
[14, p. 176], there is u ∈ BV such that a subsequence
{unk } converges to u in L1; without loss of generality,
we may assume that unk → u pointwise almost every-
where. By the lower semicontinuity of the BV norm
[14, p. 172], TV(u) ≤ lim inf TV(unk ). Since unk −
f log(unk ) is bounded below (by −‖ f − f log f ‖∞),
we may use Fatou’s Lemma to conclude that J (u) ≤
lim inf J (unk ). Thus E(u) ≤ lim inf E(unk ), and
u minimizes E .

Clearly TV is a convex function. Since the logarithm
is a strictly concave function and f is positive, J is
strictly convex. Hence E is strictly convex. Therefore,
the minimizer u is unique.

4. Numerical Results

We use gradient descent to solve (9). We implement
a straightforward, discretized version of the following
PDE:

ut = div

( ∇u

|∇u|
)

+ 1

βu
( f − u), with

∂u

∂�n = 0 on ∂�.

(12)

Derivatives are computed with standard centered-
difference approximations. The quantity |∇u| is re-
placed with

√
|∇u|2 + ε for a small, positive ε. The

time evolution is done with fixed timesteps, until the
change in u is sufficiently small. A similar procedure is
used to implement the ROF model (1), which we use
for comparison with our proposed model.

The example in Fig. 1 consists of circles with inten-
sities 70, 135, and 200, enclosed by a square frame of
intensity 10, all on a background of intensity 5. Poisson
noise is then added; see Fig. 2(a). Note that there is no
parameter associated with Poisson noise, but the noise
magnitude depends on the absolute image intensities.
The amount of noise in a region of the image increases
with the intensity of the image there.

In Figs. 2(b) and (c), the image has been denoised
with the ROF (total variation) model (1). The result
depends on the paramater λ. We choose λ accord-
ing to the discrepancy principle, which says that the
reconstruction should have a mean-squared difference
from the noisy data that is equal to the variance of
the noise. This is equivalent to the idea that of all the
possible reconstructed images that are consistent with
the noisy data, the image that should be chosen is the
one that is most regular. In our example, we used a
noise variance of the mean-squared difference between
the noised image and the original image. (In cases
where there is no original image available, the noise
variance would have to be estimated.) The resulting
λ of 0.04 gives the image in Fig. 2(b). The frame is
almost completely washed out, as it differs from the
background by less than the average noise standard
deviation of 7.33. The frame can be preserved by in-
creasing λ to 0.4, which has the effect of decreasing the
strength of the regularization. The result, in Fig. 2(c),
is that the noise in the higher-intensity regions of the
image is not removed.

For our Poisson-modified total variation model, we
chose the parameter β according to a suitably modi-
fied discrepancy principle: the value of the data fidelity
term

∫
u − f log u for the reconstructed image should

match that of the original image. In the example, this
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Figure 3. (a) Lineout of Poisson-noised circles image with frame. (b) Lineout of ROF denoised image. The frame is not well preserved. (c)

Lineout of ROF denoised image with decreased regularization strength. The frame is preserved, but the noise in the higher-intensity regions

remains. (d) Lineout of image denoised with Poisson-modified total variation. Noise is removed at all scales, while preserving the frame.

resulted in a β of 0.25. As noted above, the model
behaves locally like ROF with a signal-dependent λ

equal to 1/βu. We thus have an effective λ of 0.8 for
the background, 0.4 for the frame, and a smallest value
of 0.02 in the center. Note that 0.4 was a value for λ for
which the ROF model preserved the frame, while 0.02
gives a stronger regularization than that of ROF from
the discrepancy principle. Therefore, it is not surprising
that in Fig. 2(d), the frame is preserved as well as in
Fig. 2(c), while the large-magnitude noise in the center
is removed as well as in Fig. 2(b). Also see Fig. 3 for

lineouts from the middle of the images, in which the
qualitative properties of the results can be more clearly
seen.

We can also compare our model with the ROF
model by measuring the mean-squared difference
between the reconstructed images and the original,
noise-free image. This was 4.40 for our model, and
5.10 for the ROF model.

A second example in Fig. 4 uses an image of num-
bers of intensity 5, on regions of intensity 10, 85, 160,
and 235. As in the previous example, the ROF model
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Figure 4. (a) Numbers on backgrounds of increasing intensity, corrupted by Poisson noise. (b) ROF denoised image. The ‘1’ is obliterated.

(c) Decreasing the regularization strength preserves the ‘1’, but noise remains. (d) Our model removes noise at all scales and preserves features

in low-intensity regions.

removes noise well, but eliminates low-intensity fea-
tures (Fig. 4(b)). The lower noise level in the low in-
tensity region allows the ‘1’ to be preserved if the reg-
ularization strength is decreased (Fig. 4(c)), but then
stronger noise in higher intensity regions remains. Our
model removes noise at all scales; since the regulariza-
tion strength self-adjusts in lower intensity regions, the
‘1’ is preserved (Fig. 4(d)).

5. Conclusions

We have adapted the successful ROF model for to-
tal variation regularization to the case of images

corrupted by Poisson noise. The gradient descent iter-
ation for this model replaces the regularization param-
eter with a function. This results in a signal-dependent
regularization strength, in a manner that exactly suits
the signal-dependent nature of Poisson noise. From ex-
amples, we see that the resulting weaker regularization
in low intensity regions of images allows for features
in these regions to be preserved. If the image also con-
tains higher intensity regions, the regularization will be
stronger there and still remove the noise. This contrasts
with the ROF model, whose uniform regularization
strength must be chosen to either remove high intensity
noise or retain low intensity features; both cannot be
done.
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