Things coming due:

today: HW problem #6
Thursday: HW problem #7
Tuesday (11th): HW problems #8, #9

Other Reminders

make a solid contact plan and get it approved by me.
Definition 3. A set $S \subseteq \mathbb{R}^n$ is bounded if there exists $K \in \mathbb{R}$ such that $\|x\| < K$ for all $x \in S$.

Definition 4. A set $S \subseteq \mathbb{R}^n$ is convex if for any $x, y \in S$ and any $a \in [0, 1]$, $ax + (1-a)y \in S$.

Example #1: Prove that every hyperplane in \mathbb{R}^n is convex.

Example #2: Prove that every halfspace in \mathbb{R}^n is not bounded.

Group Tasks:

4. Prove that the feasible region of any linear program is convex.

Reword Definition 3:
(a) "A set S, a subset of vectors with n real entries, is bounded if there exists a real number K such that the norm of a vector x is less than K for every vector x in the set S.
(b) "A set S is bounded if some ball centered at the origin contains S.
(c) "A set S is bounded if a ball contains it."

Reword Definition 4:
(a) "A set S is convex if every line segment with endpoints in S is also completely in $S"
DEF: (hyperplane)

DEF: (convex set)

Every hyperplane in \mathbb{R}^n is convex.

Proof:

Suppose $H = \{ x \in \mathbb{R}^n | a^T x = b \}$, $z, y \in H$, $\alpha \in [0, 1]$.

Define $\omega = \alpha z + (1 - \alpha) y$.

We demonstrate that H is convex by showing that $\omega \in H$, that is $a^T \omega = b$.

Notice $a^T \omega = a^T[\alpha z + (1 - \alpha)y]$

$= \alpha a^T z + (1 - \alpha) a^T y$

$= \alpha b + (1 - \alpha) b$

$= b$

So $\omega \in H$ and thus, H is convex.

[]
Every halfspace in \(\mathbb{R}^n \) is not bounded.

Proof: (by contradiction) Suppose, by way of contradiction, that halfspace \(H = \{ x \in \mathbb{R}^n \mid a^T x \geq b \} \) is bounded.

We will demonstrate that for any \(K > 0 \) there exists \(x \in H \) such that \(\|x\| > K \), a contradiction, so that \(H \) is not bounded.

By assumption, \(H \) is bounded so there exist \(K > 0 \) so that \(\|x\| < K \) for all \(x \in H \). By definition there exists at least one non-zero element of \(a \), say \(a_k \).

If \(a_k > 0 \) then consider \(x \) such that \(x_k = M, M > K, M > \frac{1}{a_k} \) and \(x_{i \neq k} = 0 \). we have

\[
 a^T x = a_k x_k > \frac{1}{a_k} \cdot M \geq b, \quad \text{so } x \in H.
\]

But \(\|x\| = M > K \), a contradiction.

A similar argument holds for \(a_k < 0 \).

Thus, every halfspace in \(\mathbb{R}^n \) is not bounded. \(\square \)
The feasible region of any linear program is convex.

Proof: Consider the feasible region \(P = \{x \in \mathbb{R}^n \mid Ax \leq b \} \) of a general linear program. We demonstrate that \(P \) is convex by showing that for arbitrary \(y, z \in P \) and \(a \in [0,1] \), \(w = ay + (1-a)z \in P \). For \(w \in P \) we must show \(Aw \leq b \). Observe:

\[
Aw = A \left[ay + (1-a)z \right] \\
= aAy + (1-a)Az \\
\leq ab + (1-a)b \\
= b.
\]

So \(w \in P \). Thus \(P \) is convex. \(\square \)