MATH 546
Numerical Analysis of Elliptic PDEs

Homework assignment 2
Date assigned: October 3, 2008
Due date: October 17, 2008

• Include a cover page and *this* problem sheet
• Include the printout of your program(s) (if any) for completeness

PROBLEM:
Consider the following Dirichlet problem:
\[
\begin{align*}
-\Delta u &= -\sin \pi x \sin 2\pi y \text{ in } \Omega \\
u &= 0 \text{ on } \partial \Omega.
\end{align*}
\]
(1)
Let \(\Omega \) be square \((0, 1) \times (0, 1)\).
• Use Gauss-Seidel and SOR schemes to find an approximate solution of problem (1) with \(\Delta x = \Delta y = 1/10 \).
• Use two stopping criteria: difference of two successive iterations and residual in \(l_2 \) and sup-norm with tolerance \(10^{-5} \).
• What is the optimal value of \(\omega_b \) for the SOR method?
• For each scheme show the following information

| Iteration number | \(||x^{k+1} - x^k||_2 \) | \(||r^{k+1}||_2 \) | \(||x^{k+1} - x^k||_\infty \) | \(||r^{k+1}||_\infty \) |
|------------------|-----------------|-----------------|-----------------|-----------------|

• Plot the solutions you obtained