College of Arts and Sciences

Department of Mathematics

Recent Faculty Authored Books



Mathematical Reasoning for Elementary School Teachers, 6th Edition
- by Calvin T. Long, Duane W. DeTemple, and Richard S. Millman

Mathematical Reasoning for Elementary School Teachers, Sixth Edition presents the mathematical knowledge needed for teaching, with an emphasis on why future teachers are learning the content as well as when and how they will use it in the classroom. The Sixth Edition has been streamlined to make it easier to focus on the most important concepts. The authors continue to make the course relevant for future teachers, including the new features like Examining School Book Pages, as well as the hallmark features like Into the Classroom discussions and Responding to Students questions. Activities, classroom videos, and resources for professional development for future teachers are also available.


Fundamentals of Matrix Computations, 3rd Edition

- by David S. Watkins

Fundamentals of Matrix Computations, Third Edition thoroughly details matrix computations and the accompanying theory alongside the author’s useful insights. Featuring many new and updated examples and exercises that use the MATLAB® language, this revision presents the most important algorithms of numerical linear algebra and helps readers to understand how the algorithms are developed and why they work. It also includes modern coverage of Singular Value Decomposition, a streamlined discussion of the Gram-Schmidt process, and a discussion on balancing the eigenvalue problem. Practicing scientists and graduate and advanced undergraduate students will find this popular book more than meets their needs.


Controllability of Partial Differential Equations Governed by Multiplicative Controls

- by Alex Khapalov

The series Lecture Notes in Mathematics by Springer reports on new developments in mathematical research and teaching.

The goal of this research monograph is to address the issue of global controllability of partial differential equations in the context of multiplicative (or bilinear) controls, which enter the model equations as coefficients. Models examined include the linear and nonlinear parabolic and hyperbolic PDE's, the Schrodinger equation, and coupled hybrid nonlinear distributed parameter systems modeling the swimming phenomenon. The book offers a new intrinsically nonlinear methodology to approach these highly nonlinear controllability problems.


Computation of Multivariate Normal and t Probabilities
- by Alan Genz and Frank Bretz

Multivariate normal and t probabilities are needed for statistical inference in many applications. Modern statistical computation packages provide functions for the computation of these probabilities for problems with one or two variables. This book describes recently developed methods for accurate and efficient computation of the required probability values for problems with two or more variables. The book discusses methods for specialized problems as well as methods for general problems. The book includes examples that illustrate the probability computations for a variety of applications.


The Matrix Eigenvalue Problem: GR and Krylov Subspace Methods
- by David S. Watkins

This book presents the first in-depth, complete, and unified theoretical discussion of the two most important classes of algorithms for solving matrix eigenvalue problems: QR-like algorithms for dense problems and Krylov subspace methods for sparse problems. The author discusses the theory of the generic GR algorithm, including special cases (for example, QR, SR, HR), and the development of Krylov subspace methods. Also addressed are a generic Krylov process and the Arnoldi and various Lanczos algorithms, which are obtained as special cases. The chapter on product eigenvalue problems provides further unification, showing that the generalized eigenvalue problem, the singular value decomposition problem, and other product eigenvalue problems can all be viewed as standard eigenvalue problems. The author provides theoretical and computational exercises in which the student is guided, step by step, to the results. Some of the exercises refer to a collection of MATLAB® programs compiled by the author that are available on a Web site that supplements the book.

Readers of this book are expected to be familiar with the basic ideas of linear algebra and to have had some experience with matrix computations. This book is intended for graduate students in numerical linear algebra. It will also be useful as a reference for researchers in the area and for users of eigenvalue codes who seek a better understanding of the methods they are using.


Perspectives on Supported Collaborative Teacher Inquiry
- by David Slavit, Tamara Holmlund Nelson, Anne Kennedy

Supported collaborative teacher inquiry (SCTI) describes the process of professional development in which teacher teams build collaborative structures for the purpose of inquiring into aspects of their own instructional practice. Professional development performed collaboratively and grounded in "the work teachers do" is a highly effective forum for challenging existing beliefs about content, learners, and teaching and using data and research to reflect on, and possibly change, instructional practice. The contributors to this volume describe supported collaborative inquiry as a framework for teacher professional development and provide specific empirical evidence found in examples of SCTI. The chapters focus on the building of collaborative support structures, nurturing an inquiry stance, progressing through an inquiry process, and the various kinds of support mechanisms necessary to engage in SCTI. This seminal work in teacher research will be of interest to scholars, students, teachers, and administrators seeking insight into teacher education, teacher leadership, and teacher inquiry.

Department of Mathematics, PO Box 643113, Neill 103, Washington State University, Pullman WA 99164-3113 Phone: 509-335-3926 Fax: 509-335-1188 Contact Us