Convex Models in Bundle Methods for Nonsmooth Nonconvex Minimization: Prerequisite for a VU-algorithm

Robert Mifflin

http://www.math.wsu.edu/faculty/mifflin

Work with Claudia Sagastizábal

UBCO 2014, Kelowna

Grant support: NSF DMS 0707205, AFOSR FA9550-11-1-0139 and SOARD
Introduction

\[\min_{x \in \mathbb{R}^n} f(x); \quad f \text{ locally Lipschitz,} \]
\[\text{only one (Clarke) gradient } g(x), \]
\[\text{computed by a black box at each } x. \]

Ultimate Goal: Design a VU-algorithm for such \(f \).

A VU-algorithm implicitly exploits underlying nonsmooth/smooth structure to achieve rapid convergence.
CONVEX CASE

Lewis and Overton 8-variable half-and-half function

[MS, A VU-algorithm for convex minimization, Math. Prog. 104(2-3), 583-608, 2005]

Sublinear, linear, and superlinear convergence - convex case
Lewis and Overton 8-variable half-and-half function

[MS, A VU-algorithm for convex Math. Prog. 104(2-3), 583-608, 2005]

Sublinear, linear, and superlinear convergence -
What can be done for nonconvex case?
Introduction

\[\min_{x \in \mathbb{R}^n} f(x); \ f \text{ locally Lipschitz} \]

only one (Clarke) gradient \(g(x) \),
computed by a black box at each \(x \).

Ultimate Goal: Design a VU-algorithm for such \(f \).

A VU-algorithm implicitly exploits underlying nonsmooth/smooth structure to achieve rapid convergence. To do so, a suitable V-model for \(f \) is needed.

This talk: Define a bundle method that achieves convergence to stationary points and produces good V-models for \(f \). We refer to this as a viable algorithm with a viable V-model (i.e. polyhedral model). Also consider more general convex models.
Outline

- Difficulty on V-space due to nonconvexity

- Four general conditions for a viable bundle algorithm

- Framework with model functions M, centers x, line searches generating null or serious (next center) points

- General stationarity theorem

- Specific V-model bundle algorithm with safeguarded negative curvature corrections generated by line searches

- Specific null and serious point definitions for obtaining finite line searches for semismooth objectives and viability to imply asymptotic stationarity
- Future work for a complete VU-algorithm
\(\mathcal{V} \) and \(\mathcal{U} \) subspaces and graph of \(f \) on \(\mathcal{V} \)

A nonconvex pdg-structured example

\[
f(x_1, x_2, x_3) = \frac{1}{2} x_1^2 + \frac{1}{2} \ln\left(1 + \sqrt{(x_1^2 - 2x_2)^2 + (x_3 - x_2)^2}\right)
\]

\(x^* = (0, 0, 0) \) is a stationary point (minimizer)
zero subgradient \(\in \partial f(x^*) \)

In general, for any \(\bar{x} \)

\(\bar{g} \in \partial f(\bar{x}), \quad \mathcal{V}(\bar{x}) := \text{lin}(\partial f(\bar{x}) - \bar{g}) \quad \text{and} \quad \mathcal{U}(\bar{x}) := \mathcal{V}(\bar{x})^\perp \)
A view of f on $\mathcal{V}(x^*)$
Bundle iteration elements

For a prox-parameter $\mu > 0$ and a convex model function $M(\approx f$ near a center $x)$ define

search direction $d(x) := \arg \min M(x + \cdot) + \frac{1}{2}\mu |\cdot|^2,$

aggregate gradient $G(x) := -\mu d(x) \in \partial M(x + d(x)),$

aggregate error $E(x) := M(x) - M(x + d(x)) - \mu |d(x)|^2 \geq 0$ (nonnegative by subgradient inequality for convex M),

progress measure $D(x) := f(x) - M(x + d(x)) - \frac{\mu}{2} |d(x)|^2,$

$D(x) = f(x) - M(x) + E(x) + \frac{1}{2\mu} |G(x)|^2,$

so $D(x) \geq E(x) + \frac{1}{2\mu} |G(x)|^2 \geq 0$

if $f(x) \geq M(x)$
Bundle iteration elements

For a prox-parameter $\mu > 0$ and a model function $M(\approx f \text{ near a center } x)$ define

search direction $d(x) := \arg \min M(x + \cdot) + \frac{1}{2} \mu |\cdot|^2$,

aggregate gradient $G(x) := -\mu d(x) \in \partial M(x + d(x))$,

aggregate error $E(x) := M(x) - M(x + d(x)) - \mu |d(x)|^2 \geq 0$ (nonnegative by subgradient inequality for convex M),

progress measure $D(x) \geq E(x) + \frac{1}{2\mu} |G(x)|^2 \geq 0$ if $f(x) \geq M(x)$

What is a viable model?
Viable Models

A model function M is viable if it is convex and satisfies

$\textbf{V1}$ The model is lower at its center x: $M(x) \leq f(x)$

$\textbf{V2}$ Finite version

Zero aggregate error implies aggregate gradient is an f-subgradient:

$E(x) = 0 \implies G(x) \in \partial f(x)$
Viable Models

A model function M is viable if it is convex and satisfies conditions

V1 The model is lower at its center x: $M(x) \leq f(x)$

$V1$ implies $D(x) \geq E(x) + \frac{1}{2\mu}|G(x)|^2 \geq 0$

V2 Finite version

Zero aggregate error implies
aggregate gradient is an f-subgradient:

$E(x) = 0 \implies G(x) \in \partial f(x)$

$V1+V2$ and $D(x) = 0$ imply stationarity of x
A model function M is viable if it is convex and satisfies conditions

V1 The model is lower at a center x: $M(x) \leq f(x)$

$V1$ implies $D(x) \geq E(x) + \frac{1}{2\mu}|G(x)|^2 \geq 0$

V2 Finite version

Zero aggregate error implies aggregate gradient is an f-subgradient:

$E(x) = 0 \implies G(x) \in \partial f(x)$

$V1+V2$ and $D(x) = 0$ imply stationarity of x

For f convex, a cutting-plane model ensures both conditions hold, even an asymptotic version of $V2$.
Viable Algorithms

A bundle algorithm is viable if its model M is viable and it satisfies asymptotic conditions $V2$ and $V3$ and line search condition $V4$, depending on D-decreasing null and f-decreasing serious point definitions:

V2 Algorithmic (asymptotic) version

Zero asymptotic aggregate error implies associated asymptotic aggregate gradient is an f-subgradient:

$$x_k \to \bar{x} \text{ and } E(x_k) \to 0 \implies G(x_k) \to \varepsilon \partial f(\bar{x})$$

$V1+V2$ and associated $D(x_k) \to 0$ imply stationarity of \bar{x}
Viable Algorithms

A bundle algorithm is viable if its model M is viable and it satisfies asymptotic conditions $V2$ and $V3$ and line search condition $V4$, depending on D-decreasing null and f-decreasing serious point definitions:

V2 Algorithmic (asymptotic) version

Zero asymptotic aggregate error implies associated asymptotic aggregate gradient is an f-subgradient:

$$x_k \to \bar{x} \text{ and } E(x_k) \to 0 \implies G(x_k) \to \partial f(\bar{x})$$

V3 Zero asymptotic progress measure:

$$x_k \to \bar{x} \implies D(x_k) \to 0$$

V4 viable line search at each iteration: defined next to find a null or serious point

Bundle algorithm with viable line search

Input null/serious point defs. and $x_0, \mu_0 > 0, M_0$;
initialize $\ell := 0$, $k := 0$, $x := x_0$

Loop: Solve subproblem with x, μ_ℓ, M_ℓ for $d_\ell(x)$, $D_\ell(x)$.
 If $D_\ell(x) = 0$, stop with x stationary.
 Else, call for a line search from x along $d_\ell(x)$
 with stepsize $t > 0$ so that ...
Bundle Algorithm with **viable** line search

either $t \uparrow \infty$ and $f(x + td_\ell(x)) \downarrow -\infty$
or it stops with $t = t_\ell$ such that the point

$$y_{\ell+1} := x + t_\ell d_\ell(x)$$
is either null or serious.

If $y_{\ell+1}$ is serious, set $x_{k+1} := y_{\ell+1}$, $\ell(k) := \ell$ and replace x by x_{k+1} and k by $k + 1$.

Choose $\mu_{\ell+1} > 0, M_{\ell+1}$ based on bundled M_ℓ-data, $y_{\ell+1}$ and other data generated at iteration ℓ.
Replace ℓ by $\ell + 1$ and go to Loop.
Theorem (Stationarity).

Suppose

- the bundle algorithm does not terminate,
- the prox-parameters are in a positive interval
 \([\mu_{\text{min}}, \mu_{\text{max}}]\), and
- the progress measure sequence \(\{D_\ell(x_k)\}\) is bounded.

If conditions **V1** to **V4** hold then any \(\bar{x}\) that is a limit point of \(\{x_k\}\) is stationary for \(f\).

If \(x_k\) is finite with \(\bar{x}\) being the last \(x_k\) then **V3** is written \(D_\ell(\bar{x}) \rightarrow 0\) instead of \(D_{\ell(k)}(x_k) \rightarrow 0\).

Now, for nonconvex \(f\), we define a specific algorithm with viable polyhedral model, line search and null/serious definitions.
Specific viable model for nonconvex f

Polyhedral (V-model) function

$$M(x + d) = \max\{f(x) - \tilde{e}(x, y_i) + \langle \tilde{g}(x, y_i), d \rangle : y_i \in B\}.$$

Gradient estimates $\tilde{g}(x, y_i)$ and linearization error estimates $\tilde{e}(x, y_i)$ depend on the center x, a bundle B of previous iterates y_i and associated data.
Specific viable model for nonconvex f

Polyhedral (V-model) function

$$M(x + d) = \max \{ f(x) - \tilde{e}(x, y_i) + \langle \tilde{g}(x, y_i), d \rangle : y_i \in B \}.$$

Gradient estimates $\tilde{g}(x, y_i)$ and linearization error estimates $\tilde{e}(x, y_i)$ depend on the center x, a bundle B of previous iterates y_i and associated data

\textbf{V1} ensured by forcing $\tilde{e}(x, y_i) \geq 0$ via sufficient curvature terms or safeguards

Also beneficial to keep center x in B and to have

$\tilde{e}(x, x) = 0$, $\tilde{g}(x, x) = g(x)$
Specific viable model for nonconvex f

Polyhedral (V-model) function

$$ M(x + d) = \max\{f(x) - \tilde{e}(x, y_i) + \langle \tilde{g}(x, y_i), d \rangle : y_i \in B\}. $$

Gradient estimates $\tilde{g}(x, y_i)$ and linearization error estimates $\tilde{e}(x, y_i)$ depend on the center x, a bundle B of previous iterates y_i and associated data

$$(y_i, f(y_i), g(y_i), H(y_i), s(y_i))$$

with low rank Hessian matrix and safeguard scalar for down-shifting (both zero if f is convex)

V1 ensured by forcing $\tilde{e}(x, y_i) \geq 0$ via sufficient curvature terms or safeguards

Also beneficial to keep center x in B and to have the center linearization $f(x) + \langle g(x), d \rangle$ in the model-max
Convex \(f \)

\[
\tilde{g}(x, y) := g(y), \text{ independent of } x \neq y,
\]
\[
\tilde{e}(x, y) := e(x, y) := f(x) - (f(y) + \langle g(y), (x - y) \rangle);
\]
with \(y = y_i \) this gives lower cutting planes: \(e(x, y_i) \geq 0 \)
and further convex analysis gives \(V_2 \)

Nonconvex \(f \)

Keep \(M \) polyhedral and simply modify \(\tilde{e}, \tilde{g} \) via negative curvature corrections from \(H \), computed during line search. When corrections are not large enough there is a safeguard using \(s \) to make \(\tilde{e} \) large enough to obtain \(V_2 \), depending on outer semicontinuity of \(\partial f(\cdot) \).
Convex f

\[\tilde{g}(x, y) := g(y), \text{ independent of } x \neq y, \]
\[\tilde{e}(x, y) := e(x, y) := f(x) - (f(y) + \langle g(y), (x - y) \rangle); \]
with $y = y_i$ this gives lower cutting planes: $e(x, y_i) \geq 0$
and further convex analysis gives $V2$

Nonconvex f

Keep M polyhedral and simply modify \tilde{e}, \tilde{g} via negative curvature corrections from H, computed during line search. When corrections are not large enough there is a safeguard using s to make \tilde{e} large enough to obtain $V2$, depending on outer semicontinuity of $\partial f(\cdot)$.

Solving the proximal subproblem with polyhedral M gives $G(x) [\mathcal{E}(x)]$ as a convex combination of $\tilde{g}(x, y_i) [\tilde{e}(x, y_i)]$.
Geometry of single variable VU-minimization
($n = 1$)

(convex f)

The next iterate is the minimizer of the V-model
(closer to x than the U-model minimizer)
superlinearly convergent for certain piecewise C^2 functions when safeguarded properly
An interval $[x, y]$ or $[y, x]$ is called compatible if $f(x) \leq f(y)$ and $\langle g(x), (y - x) \rangle \leq 0$.

The $n = 1$ algorithm generates such intervals.

However, the viable line search of the n-variable algorithm determines the endpoints of its t-interval of uncertainty based on satisfaction (or not) of an Armijo f-descent test dictated by the serious point definition given below.

For a compatible t-interval the line search defines its next iterate as in the above algorithm; otherwise the next iterate is the bisector of the t-interval.
The $n = 1$ algorithm updates two 2^{nd} derivative estimates and associated *quadratic* f-approximates using previous interval endpoints.

The n-variable algorithm proceeds similarly, with respect to V-models, using matrices $H(x + td(x))$, updated by an SR1 formula during line search on t, to employ if negative curvature is found.
Specific Viable Model Definition

Given a center x and a bundle point y with associated data $g(y)$, $H(y)$ and $s(y)$ compute the curvature

$$h(x, y) := \langle x - y, H(y)(x - y) \rangle$$

Nonnegative curvature h:

$$\tilde{g}(x, y) := g(y) \quad \tilde{e}(x, y) := \max(e(x, y), s(y)|x - y|^2)$$

Negative curvature h:

$$\tilde{g}(x, y) := g(y) + H(y)(x - y) \quad \tilde{e}(x, y) := \max(e(x, y) - \frac{1}{2} h, s(y)|x - y|^2)$$
Specific Viable Model Definition

Given a center x and a bundle point y with associated data $g(y)$, $H(y)$ and $s(y)$ compute the curvature

$$h(x, y) := \langle x - y, H(y)(x - y) \rangle$$

Nonnegative curvature h:

$$\tilde{g}(x, y) := g(y) \quad \tilde{e}(x, y) := \max(e(x, y), s(y)|x - y|^2)$$

Negative curvature h:

$$\tilde{g}(x, y) := g(y) + H(y)(x - y) \quad \tilde{e}(x, y) := \max(e(x, y) - \frac{1}{2}h, s(y)|x - y|^2)$$

$s(y) \in [s_{\text{min}}, s_{\text{max}}]$ with safeguard $s_{\text{min}} > 0$ if f is not convex, to obtain $V2$.

These definitions immediately imply $V1$.
Specific viable null/serious point definitions

The null point definition is the weakest one known such that infinite number of consecutive null steps with μ nondecreasing and $x_k = \bar{x}$ fixed make the $D_\ell(\bar{x})$-sequence converge to zero (V3 null version).

Four parameters for linear combinations of $D(x)$ and $\mu |d(x)|^2 = |G(x)|^2 / \mu = - \langle G(x), d(x) \rangle$, with bounds for obtaining V3, V4.

- null point D-decrease: $m_N \in (0, 1)$
- serious point Armijo-type f-decrease: $m_A \in (0, m_N)$
- serious point small stepsize D-decrease: $m_S \in (0, m_N - m_A)$
- both points V-model improvement: $m_V \in [0, 1]$ (V5)
- a fifth parameter is possible for even more serious flexibility
Specific viable null/serious point definitions

\(y_+ = x + td(x) \) with \(t > 0 \)

is a null step point if

\[-\tilde{e}(x, y_+) + \langle \tilde{g}(x, y_+), d(x) \rangle \geq -m_N D(x) - m_V \frac{1}{2} \mu |d(x)|^2; \]

is a serious step point if

\[
\frac{f(y_+) - f(x)}{t} \leq -m_A D(x) - m_V \frac{1}{2} \mu |d(x)|^2
\]

and

\[
t \geq 1 \quad \text{or} \quad \tilde{e}(x, y_+) \geq m_S D(x).
\]

Lemma. If \(f \) is convex and \(s_{\text{max}} = 0 \) then \(\tilde{g} = g \), \(\tilde{e} = e \) and \(t = 1 \) gives either a null or a serious point.

For \(t < 1 \) the inequality with parameter \(m_S \) ensures \(V_3 \) for a serious point sequence when its corresponding \(t \)-sequence converges to zero.
Convergence of Specific Viable Algorithm

Theorem (Stationarity).

Suppose f is semismooth and

- the bundle algorithm does not terminate,
- the prox-parameters are in a positive interval $[\mu_{\text{min}}, \mu_{\text{max}}]$, and
- the sequences of centers $\{x_k\}$ and matrices $\{H(y_\ell)\}$ are bounded.

Then any \bar{x} that is a limit point of $\{x_k\}$ is stationary for f.

Proof shows satisfaction of $\textbf{V1}$ to $\textbf{V4}$ with the asymptotic conditions based on boundedness of $\{y_\ell\}$, which follows from $\{x_k\}$ bounded and $\textbf{V4}$ depending on semismoothness of f. \qed
Future research

(i) For the exceptional case when $y(1) = x + d(x)$ does not satisfy an Armijo descent test, determine conditions for when $H(y(1))$ can be an SR1 update of $H(y_j)$ for some y_j active in the bundle that generated $d(x)$. This would include the angle between $d(x)$ and $y_j - y(1)$ being small.

(ii) Determine choices for $s(y)$ in the n-variable case; dependence on x too as in the 1-variable case?

(iii) Using the above bundle algorithm develop a VU-algorithm for lower-C^2 functions [Janin, 1974], [Rockafellar, 1982]. This involves choosing values for $m_V \leq 1$ to generate very good V-models.
Recall, \(y_+ = x + td(x) \) with \(t > 0 \)

is a null step point if
\[
-\bar{e}(x, y_+) + \langle \tilde{g}(x, y_+), d(x) \rangle \geq -m_N D(x) - m_V \frac{1}{2} \mu |d(x)|^2;
\]

is a serious step point if
\[
\frac{[f(y_+) - f(x)]}{t} \leq -m_A D(x) - m_V \frac{1}{2} \mu |d(x)|^2
\]
and
\[
t \geq 1 \quad \text{or} \quad \bar{e}(x, y_+) \geq m_S D(x).
\]
Line Search with variable \(t \)

The search generates a sequence of nested intervals \([t_L, t_R]\) where \(x + td(x) \) with \(t = t_L(t_R) \) does (does not) satisfy the serious point Armijo \(f \)-descent condition.

Start with \(t = 1 \) in the initial interval \([t_L, t_R) = [0, \infty)\).

If \(t = 1 =: t_R \) then enter the interpolation

Loop: If \(x + td(x) \) is a serious or null point, exit.

If \([t_L, t_R]\) is a VU-model compatible interval compute the next value of \(t \) as in the single variable algorithm.
Else replace \(t \) by the bisector of \([t_L, t_R]\).
Replace the A-appropriate endpoint of \([t_L, t_R]\) by \(t \) and go to Loop.

Else \((t = 1 =: t_L) \),
sequentially increase t until there is an exit with $t =: t_L$ and $\langle g(x + td(x)), d(x) \rangle$ satisfying a Wolfe test, or $t =: t_L$ and t being too large (i.e. $f(x + td(x))$ too small), or $t =: t_R$.

In the last case an interpolation phase as above could be entered to find a serious point, possibly better than the one given by the interpolation entering t_L value.

Lemma. If f is semismooth then the above line search is finite.