COLLEGE OF ARTS AND SCIENCES Department of Mathematics and Statistics

MATHEMATICS and STATISTICS


Lynn Schreyer

(formerly Lynn Schreyer Bennethum)
Associate Professor
Office: Neill Hall Room 225
Phone: (509) 335-3152
Fax: (509) 335-1188
Mailing address: click here
Email:Lynn.Schreyer@wsu.edu

Vita

Teaching - Courses

Research Interests
I am interested in mathematically modeling porous media - any material consisting of a solid and one or more other phases. In particular I enjoy modeling swelling porous materials (materials that swell due to the addition of more material, changing the concentration of ions, or the unloading of a pressure load), and porous materials with more than one fluid phase. Examples of swelling porous media include clays (expansive soils), polymers (such as drug-delivery polymers and bio-polymers), and cell membranes. To develop models I use a combination of averaging theory and thermodynamics (exploitation of the second law and manipulating independent variables to relate theory with what is measurable). PhD students have worked on modeling drug-delivery systems involving swelling polymers such as Aleve ( Tessa Weinstein and Keith Wojciechowski), the movement of cilia in lungs (Kannanut Chamsri), and transport of water through multiphase fluid porous media ( Eric Sullivan). I have also contributed in collaborative settings to modeling forest fires, upscaled reactive transport, laminar to turbulent transition of fluid flow, and refugee movement.
Publications
  1. T.R. Ginn, L. G. Schreyer, and K. Zamani, Phase Exposure-Dependent Exchange Water Resources Research, 53, 619-632, 2017.
  2. M. Addassi, L. Schreyer, B. Johannesson, and H. Lin, Pore-Scale Modeling of Vapor Transport in Partially Saturated Capillary Tube with Variable Area Using Chemical Potential, Water Resources Research, 52(9), pp. 7023-7035, 2016.
  3. L. Schreyer, Note on Coussy's Thermodynamical Definition of Fluid Pressure for Deformable Porous Media, Transport in Porous Media, 114(3), pp. 815-821, 2016.
  4. K. Chamsri and L. Schreyer-Bennethum, Permeability of Fluid Flow Through a Periodic Array of Cylinders, Applied Mathematical Modeling, 39(1), pp. 244-254, 2015.
  5. K.J. Wojciechowski, J. Chen, L. Schreyer-Bennethum, and K. Sandberg Well-posedness and Numerical Solution of a Nonlinear Volterra Partial Integro-Differential Equation Modeling a Swelling Porous Media, Journal of Porous Media, 17(9), pp 763-784, 2014.
  6. L. Schreyer-Bennethum, Effective Stress for Saturated and Unsaturated Porous Media - A Differential Approach, Vadose Zone Journal, 13(5), 2014.
  7. L. Schreyer-Bennethum, Macroscopic Flow Potentials in Swelling Porous Media, Transport in Porous Media 94(1), pp. 47-68, 2012.
  8. L. Schreyer-Bennethum and L. Albright, Evaluating the Incorporation of Technology and Application Projects in the Higher Education Mathematics Classroom, International Journal of Mathematical Education in Science and Technology 42(1), pp. 53-63, 2011.
  9. J. Mandel, L.S. Bennethum, J.D. Beezley, J.L. Coen, C.C. Douglas, L.P. Franca, M. Kim, and A. Vodacek, A Wildland Fire Model with Data Assimilation Mathematics and Computers in Simulation 79, pp. 584-606, 2008.
  10. T.F. Weinstein, L.S. Bennethum, J.H. Cushman, Multiscale, Three-Phase Theory for Swelling Drug Delivery Systems. Part I: Constitutive Theory. Journal of Pharmaceutical Sciences, 97(5), pp. 1878-1903, 2008.
  11. T.F. Weinstein, L.S. Bennethum, J.H. Cushman, Multiscale, Three-Phase Theory for Swelling Drug Delivery Systems. Part II: Flow and Transport Models. Journal of Pharmaceutical Sciences, 97(5), pp. 1904-1915, 2008.
  12. Lynn Schreyer-Bennethum. Theory of Flow and Deformation of Swelling Porous Materials at the Macroscale. Computers and Geotechnics, 34, pp. 267-278, 2007.
  13. T. Weinstein and L. S. Bennethum. On the Derivation of the Transport Equation for Swelling Porous Materials with Finite Deformation. International Journal of Engineering Science, 44(18-19), pp. 1408-1422, 2006.
  14. L. S. Bennethum. Compressibility Moduli for Porous Materials Incorporating Volume Fraction, Journal of Engineering Mechanics, 132(11), pp. 1205-1215, 2006.
  15. L. S. Bennethum. Flow and Deformation: Understanding the Assumptions and Thermodynamics, in Proceedings of the XVth International Conference on Computational Methods in Water Resources (CMWR XV), June 13-17, 2004, Chapel Hill, NC, Volume 1, pp. 349-357, 2004.
  16. J. H. Cushman, L. S. Bennethum, and P. P. Singh. Toward Rational Design of Drug Delivery Substrates: I. Mixture Theory for Two-Scale Biocompatible Polymers, Multiscale Modeling and Simulation, 2(2), pp. 302-334, 2004.
  17. J. H. Cushman, P. P. Singh, and L. S. Bennethum. Toward Rational Design of Drug Delivery Substrates: II. Mixture Theory for Three-Scale Biocompatible Polymers and a Compuational Example, Multiscale Modeling and Simulation, 2(2), pp. 335-357, 2004.
  18. L. S. Bennethum and T. Weinstein. Three Pressures in Porous Media, Transport in Porous Media, 54(1), pp. 1-34, 2004.
  19. P. P. Singh, J. H. Cushman, L. S. Bennethum, and D. E. Maier. Thermomechanics of Swelling Biopolymeric Systems, Transport in Porous Media, 53, pp. 1-24, 2003.
  20. J. H. Cushman, L. S. Bennethum, and B. X. Hu. A Primer on Upscaling Tools for Porous Media, Advances in Water Resources, 25 (8-12), pp. 1043 - 1067, 2002.
  21. L. S. Bennethum and J. H. Cushman. Multicomponent, Multiphase Thermodynamics of Swelling Porous Media with Electroquasistatics:  I. Macroscale Field Equations, Transport in Porous Media, 47(3), pp. 309-336, 2002.
  22. L. S. Bennethum and J. H. Cushman. Multicomponent, Multiphase Thermodynamics of Swelling Porous Media with Electroquasistatics: II. Constitutive Theory, Transport in Porous Media, 47(3), pp. 337-362, 2002.
  23. L. S. Bennethum, M.M. Murad, and J. H. Cushman. Macroscale Thermodynamics and the Chemical Potential for Swelling Porous Media, Transport in Porous Media, 39(2), pp. 187-225, 2000.
  24. L. S. Bennethum and J. H. Cushman. Coupled Solvent and Heat Transport of a Mixture of Swelling Porous Particles and Fluids:  Single Time-Scale Problem, Transport in Porous Media, 36(2), pp. 211-244, 1999.
  25. li> L. S. Bennethum, M. A. Murad, and J. H. Cushman. Modified Darcy's Law, Fick's Law, and Terzaghi's Effective Stress Principle for Swelling Clay Soils Computers and Geotechnics, 20(3/4), pp. 245-266, 1997.
  26. L. S. Bennethum and T. Giorgi. Generalized Forchheimer Law for Two-Phase Flow Based on Hybrid Mixture Theory, Transport in Porous Media, 26(3), pp. 261-275, 1997.
  27. X. Feng and L. S. Bennethum. A Domain Decomposition Method for Solving a Helmholtz-like Problem In Elasticity using a Wilson Nonconforming Element , Mathematical Modelling and Numerical Analysis, 31(1), pp. 1-25, 1997.
  28. L. S. Bennethum, M. A. Murad, and J. H. Cushman. Clarifying Mixture Theory and the Macroscale Chemical Potential, International Journal of Engineering Science, 34(14), pp. 1611-1621, 1996.
  29. L. S. Bennethum and J. H. Cushman. Multiphase, Multicomponent Theory for Multiscale Swelling Systems with Interfaces. Part I: Balance Laws, International Journal of Engineering Science, 34(2), pp. 125-145, 1996.
  30. L. S. Bennethum and J. H. Cushman. Multiphase, Multicomponent Theory for Multiscale Swelling Systems with Interfaces. Part II: Constitutive Theory, International Journal of Engineering Science, 34(2), pp. 147-169, 1996.
  31. M. A. Murad, L. S. Bennethum, and J. H. Cushman. A Multi-Scale Theory of Swelling Porous Media: I. Application to One-Dimensional Consolidation, Transport in Porous Media, 19, pp. 93-122, 1995.
  32. J. Douglas, Jr., J. Santos, D. Sheen, and L. S. Bennethum. Frequency Domain Treatment of One-Dimensional Scalar Waves, Mathematical Models and Methods in Applied Sciences, 3, pp. 171-194, 1993.