Homework 2 Solution Key

Assigned problems: 11.6 # 19, 27, 30, 36, 70
11.7 # 16, 19, 46, 48
11.8 # 24, 33

11.6 # 19

Derivative of \(r(t) = 2 + 4t + 6t^{3/2} + \frac{10}{3}t \) at \(t = 1 \)

First, we will rewrite \(r(t) \) to have a term similar to that of the other 2 components of the vector, giving us \(+10t^{-1} \):

\[
\begin{align*}
 \vec{r}'(t) &= \left(2 + 4t \right) \hat{i} + \left(6t^{3/2} \right) \hat{j} + \left(\frac{10}{3}t \right) \hat{k} \\
 &= 2(1) \hat{i} + 6(1^{3/2}) \hat{j} + \left(\frac{10}{3} \right) \hat{k} \\
 &= 2(1) \hat{i} + 6(1) \hat{j} + \left(\frac{10}{3} \right) \hat{k} \\
 &= \left(\frac{8}{3}, 9, \frac{10}{3} \right)
\end{align*}
\]

To find \(\vec{r}'(1) \), all we need to do is plug in \(1 \) in \(\vec{r}(t) \) in \(\vec{r}'(t) \):

\[
\begin{align*}
 \vec{r}'(1) &= \left(\frac{8}{3}, 9, \frac{10}{3} \right) \\
 \vec{r}(1) &= \left(\frac{8}{3}, 9, \frac{10}{3} \right)
\end{align*}
\]

27 Unit tangent vector of \(\cos(2t), 9, 3 \sin(2t) \) for \(0 \leq t \leq \pi, \ t = \frac{\pi}{2} \)

Since we want the unit tangent vector, we first need to find a tangent vector, which means that we need to find \(\vec{r}'(t) \):

\[
\begin{align*}
 \vec{r}'(t) &= \left(\cos(2t), 9, 3 \sin(2t) \right) \\
 \vec{r}(t) &= \left(\cos(2t), 9, 3 \sin(2t) \right) \\
 &= \left(\cos(2t), 9, 3 \sin(2t) \right) \quad \text{(Chain rule)} \\
 &= \left(-2 \sin(2t), 0, 6 \cos(2t) \right)
\end{align*}
\]

To find the tangent vector at \(t = \frac{\pi}{2} \), we need to plug \(\frac{\pi}{2} \) in \(\vec{r}'(t) \):
\[r(t) = <-2\sin(2t), 0, 6\cos(2t)> \]
\[r\left(\frac{\pi}{2}\right) = <-2\sin(\pi), 0, 6\cos(\pi)> = <-2, 0, -6> \]

Now we have a tangent vector. To make it a unit tangent, we need to divide the vector by its magnitude.

\[|r\left(\frac{\pi}{2}\right)| = \sqrt{(-2)^2 + 0^2 + (-6)^2} = \sqrt{36} = 6 \]

Unit vector:
\[\frac{r\left(\frac{\pi}{2}\right)}{|r\left(\frac{\pi}{2}\right)|} = \frac{<-2, 0, -6>}{6} = \frac{1}{6}<-2, 0, -6> \]

\[\text{Integral integral of } r(t) = \int e^{t^2} + \sin(1 - t^2) \, dt \]

To find the integral of \(r(t) \), we need to find the integral of all the individual components. That is,

\[\int e^{t^2} \, dt, \int \sin(1 - t^2) \, dt, \int 2t \, dt \]

We will now proceed to take each integral separately.

\[\int e^{t^2} \, dt: \quad u = t, \quad du = e^t \]
\[du \, t = \frac{1}{2}u \, du = e^t \]

\[\int u \, du = \frac{1}{2}u^2 \]

\[= \frac{1}{2}e^{2t} + C \]

\[\int \sin(1 - t^2) \, dt \]

\[= \sin(1 - t^2) - C \]

\[= \sin(1 - t^2) + C \]

\[\int 2t \, dt = t^2 + C \]

\[= (t - 1)e^t + C \]
\[S(t \cdot \sin(t^2))\, dt : \ y = t^2, \quad du = 2\,dt, \quad \int \sqrt{2} \, dt = \sqrt{2} \, t + C_2 \]

\[S(\frac{1}{\sqrt{1 - y^2}})\, dy : \ y = \sin(u), \quad du = \cos(u)\, du \]

\[= \frac{1}{2} \int \cos(u) \, du \]

\[= \frac{1}{2} \sin(u) + C_3 \]

\[= \frac{1}{2} \sin(1) \cos^2(u) + C_3 \]

\[S(-2\,t)\, dt : \ y = \frac{1}{2} + t, \quad du = 2\,dt \]

\[S(-2\,t \cdot t^2)\, dt = -\frac{1}{2} t^2 \, du \]

\[= -t^3 + C_3 \]

\[= -t^3 + C_3 \]

Thus,
\[S(t\,dt) = \langle 5\,t \cdot 0\, dt, \ 4\,t \cdot \sin(t^2)\, dt, \ \sqrt{2} \cdot \cos(t^2)\, dt \rangle \]

\[= \langle 4\,t \cdot 0\, dt, \ 4\,t \cdot \sin(t^2)\, dt, \ \sqrt{2} \cdot \cos(t^2)\, dt \rangle \]

Taking the constant terms out gives
\[S(t\,dt) = \langle -\frac{1}{2} t^3 + C_3, \ -t^3 + C_3, \ -t^3 + C_3 \rangle \]

#56: Find \(r(t) \) satisfying \(\dot{r}(t) < 16, r(t) \cdot 1^2, r(1) = \langle 2, 3, 4 \rangle \)

Since we have \(r(t) \) and we want \(r(t) \), we need to take the integral of \(r(t) \)

\[r(t) = \int r(t)\, dt = \int \langle 5\,t \cdot 0\, dt, \ 4\,t \cdot \sin(t^2)\, dt, \ \sqrt{2} \cdot \cos(t^2)\, dt \rangle \]

\[= \int \langle 5\,t \cdot 0\, dt, \ 4\,t \cdot \sin(t^2)\, dt, \ \sqrt{2} \cdot \cos(t^2)\, dt \rangle \]

We will now proceed to evaluate the 3 integrals individually

\[\int 5\,t^{1/2} \, dt \]

\[= \frac{2}{3} t^{3/2} + C \]
\[\sin(t) \, dt: \quad y = \sin \theta \cdot \theta \, dt \rightarrow \theta = \sin^{-1} y \\ \cos(t) \, dt = \frac{1}{2} \cos(\sin^{-1} y) \, dy \\ = \frac{1}{2} \sin(\sin^{-1} y) + C_1 \\ = \frac{1}{2} y + C_2 \]

\[\sin(\theta) \, d\theta = \sin\theta \cdot \theta \, d\theta \rightarrow \theta = \sin^{-1} \theta \\ \cos(\theta) \, d\theta = \frac{1}{2} \cos(\sin^{-1} \theta) \, d\theta \\ = \frac{1}{2} \sin(\sin^{-1} \theta) + C_3 \\ = \frac{1}{2} \theta + C_4 \]

Therefore, we have that \[r(t) = \left< \frac{e^{1/2}}{2} + \frac{3}{2}, \sin(\pi t)/\pi, y(\ln t) \right> + \left< 2, 2, 0 \right> \\
We must now solve for the c vector. Knowing that \[r(1) = \left< 2, 2, 0 \right> \text{, we have} \]
\[r(1) = \left< 3, 4 \right> = \left< \frac{e^{1/2}}{2} + \frac{3}{2}, \sin(\pi t)/\pi, y(\ln t) \right> + \left< 2, 2, 0 \right> \\
\frac{e^{1/2}}{2} + \frac{3}{2} = 2 \\
\sin(\pi t)/\pi = 2 \\
y(\ln t) + 2 = 0 \]

Thus, \[r(t) = \left< \frac{e^{1/2}}{2} + \frac{3}{2}, \sin(\pi t)/\pi, y(\ln t) \right> + \left< 2, 2, 0 \right> \\
= \left< \frac{e^{1/2}}{2} + \frac{3}{2}, \sin(\pi t)/\pi + 3, y(\ln t) + 4 \right> \]

#70 Tangent line at \((\sqrt{2t+1}, \sin \pi t, 4) \) at \(t = 0 \)

For the equation of the tangent line, we need \(r'(t) \) and \(r(t) \) (Similar to point and slope from algebra).

\[r(t) = \sqrt{2t+1}, \sin(\pi t), y \rightarrow \left< 3, 0, 9 \right> \]

\[r'(t) = \left(\sqrt{2t+1}, \sin(\pi t) \right) \rightarrow \left< 0, \pi \cos(\pi t) \right> \]

\[\left(\sqrt{2t+1} \right)' = \frac{1}{2} \left(2t + 1 \right)^{-1/2} \cdot 2 \\
= \frac{1}{2} \left(2t + 1 \right)^{-1/2} \\
= \frac{1}{\sqrt{2t+1}} \]
\[
\begin{align*}
\sin^2(\pi t) &= \cos(\pi t) \cdot (\pi t) \\
&= \pi \cos(\pi t)
\end{align*}
\]

\(y = 0 \)

\[
\begin{align*}
\mathbf{r}'(t) &= \langle \pi \cos(\pi t), \pi \sin(\pi t), 0 \rangle \\
\mathbf{r}(t) &= \langle \frac{\pi}{2}, \pi \sin(\pi t), 0 \rangle \\
&= \langle \frac{\pi}{2}, \pi, 0 \rangle
\end{align*}
\]

Therefore, using (4) and (7), the tangent line is
\[
\mathbf{r}(t) = \langle 3, 0, 4 \rangle + \lambda \langle \frac{\pi}{2}, \pi, 0 \rangle
\]

11.7 #10 Velocity, speed, and acceleration given \(\mathbf{r}(t) = \langle 1 - t^2, 3 + 2t^3 \rangle \)

The velocity is the first derivative of position, thus is \(\mathbf{r}'(t) \)
\[
\begin{align*}
\mathbf{r}'(t) &= \langle -(2t), 6t^2 \rangle \\
\end{align*}
\]

The speed is the magnitude of the velocity, thus is \(|\mathbf{r}'(t)| \)
\[
|\mathbf{r}'(t)| = \sqrt{(-2t)^2 + (6t^2)^2} \\
= \sqrt{4t^2 + 36t^4} \\
= \sqrt{4t^2(1+9t^2)} \\
= 2t \sqrt{1+9t^2}
\]

The acceleration is the velocity's derivative, or 2nd derivative of position
\[
\mathbf{r}''(t) = (\mathbf{r}'(t))' = \langle -2, 12t \rangle
\]
Find velocity, speed, and acceleration for \(r(t) = (2e^{2t} + 1, e^{2t} - 1, 2e^{2t}) \).

The velocity is the derivative of position, thus is \(v(t) \):

\[
v(t) = (\frac{d}{dt}(2e^{2t} + 1), \frac{d}{dt}(e^{2t} - 1), \frac{d}{dt}(2e^{2t})) = (4e^{2t}, 2e^{2t}, 4e^{2t})
\]

The speed is the magnitude of velocity, thus is \(|v(t)| \):

\[
|v(t)| = \sqrt{(4e^{2t})^2 + (2e^{2t})^2 + (4e^{2t})^2} = \sqrt{16e^{4t} + 4e^{4t} + 16e^{4t}} = \sqrt{36e^{4t}} = 6e^{2t}
\]

The acceleration is the velocity's derivative, or 2nd derivative of position:

\[
a(t) = (\frac{d}{dt}(4e^{2t}), \frac{d}{dt}(2e^{2t}), \frac{d}{dt}(4e^{2t})) = (8e^{2t}, 4e^{2t}, 8e^{2t})
\]

Exercise 46: Given \(a(t) = (t, e^t, 1) \), initial velocity \(v(0) = (0, 0, 1) \) and initial position \(r(0) = (4, 0, 2) \).

We know \(v(t) \), and since the integral of acceleration is velocity, we have:

\[
v(t) = \int a(t) dt = \int (t, e^t, 1) dt = (\frac{t^2}{2} + C_x, e^t + C_y, t + C_z)
\]

Furthermore, we know initial velocity \(v(0) \) to be \((0, 0, 1) \). Thus:

\[
v(0) = (0, e^0, 1) = (0, 1, 1) = (0 + C_x, e^0 + C_y, 0 + C_z)
\]

From each component, we have \(0 = 0 + C_x \), \(e^0 = 1 + C_y \), and \(1 = 0 + C_z \). Thus,

\[
z = 0, y = 0, \text{ and } v(t) = (\frac{t^2}{2}, 1, t + 1)
\]
The surge general idea can be expressed to get position, velocity's integral
\[p(t) = 5 v(t) dt = <x, y, z>, \]
\[= <x, y, z> + e^{-t} <x, y, z> + e^{-t} <x, y, z> <x, y, z>
\]
We know the initial position to be \(<4, 0, 0> \) (\(r(0) \)). Thus,
\[r(0) = <4, 0, 0> = <0, 0, 0> + e^{-0} <x, y, z> + e^{-0} <x, y, z> \]
By each individual component, we have \(y = 0 \), \(x = 0 \), \(0 = 0 \). Thus,
\[r(0) = <4, -1, 0>, \text{ and } r(2) = <73, 9, 12> + e^{-2} <x, y, z> \]

A ball is hit east with speed \(<50, 0, 30> \) m/s. A crossword clues the ball south at an acceleration of \(-3 \) m/s. Let \(x \) be east, \(y \) north, and \(z \) be vertical.

- Find velocity and position.

We are told that the wind pushes the ball south at \(-3 \) m/s. For humidity, due to gravity, the ball falls (negative z) at \(-9.8 \) m/s. Thus, our acceleration is \(<0, -3, -9.8> \). The velocity is the integral of acceleration.

\[v(t) = 50 dt = <0, -3t, -9.8t> + <0, 0, 0> \]

Therefore, \(c = 50, c_x = 0 \) and \(c_z = 90 \). Using this, we have \(v(t) = <50, -3t, -9.8t> \).

The integral of velocity is position, thus the position in this case is
\[p(t) = 50 dt = <50t, -3t^2/2, -9.8t^2/2> + <0, 0, 0> \]

The ball was hit from the origin, so \(p(0) = <0, 0, 0> \). Thus,
\[p(0) = <0, 0, 0> = <50t, -3t^2/2, -9.8t^2/2> + <0, 0, 0> \]

Therefore, \(c = 0 \) and our position is \(<50t, -3t^2/2, -9.8t^2/2> \).
b: We will save (b) for the end of this question as the answers to (c) and (d) will help us sketch a graph.

c: Determine time at flight and range of object:
The ball hits the ground when the \(z \) component of the position vector is 0, so \(-9.8t + 30t^2 = 0\). Factoring out \(t \), we have \(t(30 - 9.8t) = 0\). Thus, \(t = 0 \) (when ball is hit) or \(30 - 9.8t = 0 \) (when the ball hits the ground). Solving for \(t \) gives \(t = \frac{30}{9.8} \approx 3.06 \text{ sec} \).

To find the range, we will find how much the ball moves in the \(x \) and \(y \) directions:
\[
x: 50.6 \cdot 3.06 = 156 \text{ m}
\]
\[
y: -9.8(3.06)^2 = -93 \text{ m}
\]

By the Pythagorean Theorem, the range of the ball is
\[
\text{Range} = \sqrt{(50.6 \text{ m})^2 + (-93 \text{ m})^2} = \sqrt{9306.05 \text{ m}^2} = 96.5 \text{ m}
\]

d: Maximum height of the ball:
The ball is at its maximum height when the upward velocity (\(z \) component of \(v(t) \)) is 0. Thus, \(-9.8t + 30 = 0\). Solving for \(t \) gives \(t = \frac{30}{9.8} \approx 3.06 \text{ sec} \). Alternatively, the ball is at maximum height halfway in its flight time, so \(\frac{6.12 \text{ sec}}{2} = 3.06 \text{ sec} \). To find the height, calculate the \(z \) component of \(p(t) \) for \(t = 3.06 \text{ sec} \:
\[
-9.8t^2 + 30t = -9.8(3.06)^2 + 30(3.06) \approx 93 \text{ m}
\]

b: Now that we have a few points, we can graph the curve. The ball was hit at \((0, 0, 0)\) and landed at \((3.06, -93, 0)\). It is not \((0, 0, 2)\). The ball was at maximum height at \(z = 93 \text{ m} \).
11.8 #20 Speed and length for \(f(t) = \langle 5 \cos(4t), 5 \sin(12t) \rangle \) \(0 \leq t \leq 2 \)

Speed is the magnitude of the velocity. Since we know the position, we can take the derivative of position to get velocity:

\[v(t) = f'(t) = \langle -20 \sin(4t), 60 \cos(12t) \rangle \]

The speed is the magnitude of the velocity, or in this case:

\[s(t) = \sqrt{(-20 \sin(4t))^2 + (60 \cos(12t))^2} = \sqrt{400 \sin^2(4t) + 3600 \cos^2(12t)} = \sqrt{400 \sin^2(4t) + 3600 \cos^2(12t)} = \sqrt{400 + 3600} = \sqrt{4000} = 20 \sqrt{10} \]

The length is the integral of speed evaluated at the endpoints:

\[\int_0^2 \sqrt{4000} \, dt = 13 \sqrt{10} \approx 52 \]

#33 Length of the spiral \(r = \theta \), for \(0 \leq \theta \leq 2 \pi \)

Length of a polar curve can be found by \(\int_{\phi_1}^{\phi_2} \sqrt{r^2 + (dr/d\theta)^2} \, d\theta \). In this case, we have:

\[\int_{\theta_1}^{\theta_2} \sqrt{r^2 + (dr/d\theta)^2} \, d\theta \]

Let \(u = \theta + y \), then \(du = d\theta \), so \(du \theta = \theta d\theta \), so we have:

\[\frac{3}{2} \int_0^{2\pi} \sqrt{(\theta^2 + 4)^2 - \frac{1}{3}} \, d\theta = \frac{1}{3} (\sqrt{4} + 1) - \frac{1}{3} (\sqrt{4} + 1) = \frac{1}{3} (\sqrt{4} + 1) = \frac{5}{3} \]

\[\approx 1.8 = \pi \approx 3.14 \]

\[\approx 0.929 \]