Dependence properties and bounds for ruin probabilities in multivariate compound risk models

Jun Cai and Haijun Li
August 2005
Dependence Properties and Bounds for Ruin Probabilities in Multivariate Compound Risk Models

Jun Cai*
Department of Statistics and Actuarial Science
University of Waterloo
Waterloo, ON N2L 3G1, Canada
jcai@math.uwaterloo.ca

Haijun Li
Departments of Mathematics and Statistics
Washington State University
Pullman, WA 99164, U.S.A.
lih@math.wsu.edu

June 2005

Abstract
In risk management, ignoring the dependence among various types of claims often results in over-estimating or under-estimating the ruin probabilities of a portfolio. This paper focuses on three commonly used ruin probabilities in multivariate compound risk models, and using the comparison methods, shows how some ruin probabilities increase, whereas the other decreases, as the claim dependence grows. The paper also presents some computable bounds for these ruin probabilities that are intractable even in the simplest cases, and illustrates the performance of these bounds for the multivariate compound Poisson risk models with slightly or highly dependent Marshall-Olkin exponential claim sizes.

Key words and phrases: Multivariate risk model, ruin probability, multivariate phase type distribution, Marshall-Olkin distribution, supermodular comparison, association.

*Supported in part by the NSERC grant RGPIN 250031-02
1 Introduction

Consider an insurance or investment portfolio that consists of m sub-portfolios. The claim events occur according to a point process, and each event yields several types of claims, one for each sub-portfolio, that are usually stochastically dependent. Let $N(t)$ denote the number of claim events by time $t > 0$, and $X_{j,n}$ the type j claim size of the n-th event, $1 \leq j \leq m$, $n \geq 1$. The multivariate claim surplus process of the m sub-portfolios is described by

$$S(t) = \left(\begin{array}{c} S_1(t) \\ \vdots \\ S_m(t) \end{array} \right) = \left(\begin{array}{c} \sum_{n=1}^{N(t)} X_{1,n} - p_1 t \\ \vdots \\ \sum_{n=1}^{N(t)} X_{m,n} - p_m t \end{array} \right), \quad t \geq 0,$$

where $p_j > 0$ is the premium rate in sub-portfolio j or for type j claim, $j = 1, \ldots, m$. We assume throughout that $\{(X_{1,n}, \ldots, X_{m,n}), n \geq 1\}$ is a sequence of i.i.d. non-negative random vectors, which is independent of $\{N(t), t \geq 0\}$, but allow $X_{1,n}, \ldots, X_{m,n}$ to be dependent. We also assume that $\{N(t), t \geq 0\}$ is non-explosive, that is, that for any fixed $t > 0$, $N(t)$ is finite almost surely.

Let $u_j \geq 0$, $j = 1, \ldots, m$, denote the initial capital in sub-portfolio j for such a multivariate compound risk model. A ruin event occurs if the claim surpluses of some sub-portfolios exceed, in certain fashion, their corresponding initial capital reserves. Various ruin probabilities in multivariate risk models are often of fundamental interest in risk management. For example, consider the following three ruin probabilities.

$$\psi_{\text{and}}(u_1, \ldots, u_m) = P \left(\bigcap_{j=1}^{m} \left\{ \sup_{0 \leq t < \infty} (S_j(t)) > u_j \right\} \right), \quad (1.2)$$

$$\psi_{\text{or}}(u_1, \ldots, u_m) = P \left(\bigcup_{j=1}^{m} \left\{ \sup_{0 \leq t < \infty} (S_j(t)) > u_j \right\} \right)$$

$$= P \left(\sup_{0 \leq t < \infty} \left(\max \{S_1(t) - u_1, \ldots, S_m(t) - u_m\} \right) > 0 \right), \quad (1.3)$$

$$\psi_{\text{sim}}(u_1, \ldots, u_m) = P (S_1(t) > u_1, \ldots, S_m(t) > u_m \text{ for some } t > 0)$$

$$= P \left(\sup_{0 \leq t < \infty} \left(\min \{S_1(t) - u_1, \ldots, S_m(t) - u_m\} \right) > 0 \right). \quad (1.4)$$

The ruin probability in (1.2) denotes the probability that ruin occurs, not necessarily at the same time, in all sub-portfolios eventually, whereas the ruin probability in (1.4) denotes the probability that ruin occurs in all sub-portfolios simultaneously or at the same instant in
time. The ruin probability in (1.3) represents the probability that ruin occurs in at least one sub-portfolio. The focus of this paper is on these ruin probabilities for the multivariate compound risk models.

In general, these ruin probabilities are intractable. As a matter of fact, even in the univariate case that \(m = 1 \), it is often difficult to obtain the explicit formula for its ruin probability \(\psi(u) \), which can be expressed in terms of (1.2), (1.3), or (1.4) as follows.

\[
\psi(u) = \psi_{\text{and}}(u) = \psi_{\text{or}}(u) = \psi_{\text{sim}}(u) = P\left(\sup_{0 \leq t < \infty} S_1(t) > u \right),
\]

where \(u \geq 0 \) is the initial capital. A well-known result in the univariate case is due to Asmussen and Rolski (1991) who gave an explicit formula of \(\psi(u) \) for the compound Poisson risk model when the counting process \(N(t) \) is Poisson with rate \(\lambda \), and the claim size is of phase type in the sense of Neuts (1981). A non-negative random variable \(X \) is said to be of phase type with representation \((\alpha, T, d) \) if \(X \) is the time to absorption into the absorbing state 0 in a finite Markov chain with state space \(\{0, 1, \ldots, d\} \) and initial distribution \((0, \alpha) \), and infinitesimal generator,

\[
\begin{bmatrix}
0 & 0 \\
-Te & T
\end{bmatrix},
\]

where \(0 \) is the row vector of zeros of \(d \) dimension, and \(e \) is the column vector of 1’s, and \(T \) is a \(d \times d \) non-singular matrix. For a compound Poisson risk model with the relative security loading parameter \(\theta = \frac{p_1}{E(X_{1,n})\lambda} - 1 > 0 \), if the claim size is of phase type with representation \((\alpha, T, d) \), then \(\psi(u) \) in (1.5) is the tail probability of the stationary waiting time in the \(M/PH/1 \) queue. Utilizing this fact, Asmussen and Rolski (1991) showed that for any \(u \geq 0 \),

\[
\psi(u) = -\frac{\lambda}{p_1} \alpha T^{-1} \exp \left\{ \left(T - \frac{\lambda}{p_1} t_0 \alpha T^{-1} \right) u \right\} e,
\]

where \(t_0 = -Te \). The phase type distributions enjoy many desirable properties (Neuts 1981), and in particular, any distribution on \([0, \infty)\) can be approximated by phase type distributions. Thus (1.6) is versatile in applications.

For the multivariate compound Poisson risk models, Sundt (1999) studied a recursive approach for the evaluation of the distribution of the multivariate aggregate claim process \(\left(\sum_{n=1}^{N(t)} X_{1,n}, \ldots, \sum_{n=1}^{N(t)} X_{m,n} \right) \). Chan et al. (2003) discussed the ruin probability of the aggregate claim, \(\psi_{\text{or}}(u_1, \ldots, u_m) \) and \(\psi_{\text{sim}}(u_1, \ldots, u_m) \) for the case where the claim sizes \(X_{1,n}, \ldots, X_{m,n} \) are independent for any \(n \geq 1 \). Cai and Li (2005a) established the lower bound of \(\psi_{\text{and}}(u_1, \ldots, u_m) \) for the positively associated claims, and obtained an explicit expression of the ruin probability for the aggregate claim in a multivariate compound Poisson risk model.
model whose claims of various types follow a multivariate phase type distribution. In general, however, the properties and expressions of the multivariate ruin probabilities are largely unknown. In this paper, we investigate the dependence properties of the ruin probabilities (1.2)-(1.4), and establish the sharp upper and lower bounds of (1.2)-(1.4) whose explicit expressions are intractable even in the simplest cases, such as multivariate compound Poisson risk models with multivariate exponentially distributed claims.

In Section 2, we utilize the supermodular comparison method to obtain the dependence comparisons of (1.2)-(1.4). Our results show that both $\psi_{\text{and}}(u_1, \ldots, u_m)$ and $\psi_{\text{sim}}(u_1, \ldots, u_m)$ increases, whereas $\psi_{\text{or}}(u_1, \ldots, u_m)$ decreases, as the dependence among various types of claims grows. This further illustrates the fact that ignoring the dependence among various types of claims often results in over-estimating or under-estimating the portfolio ruin probabilities. In Section 3, we develop the bounds for the ruin probabilities (1.2)-(1.4), and obtain the explicit expressions of these bounds for the multivariate compound Poisson risk models whose claims of various types follow a multivariate phase type distribution. Our bounds incorporate the dependence structure of various types of claims into consideration, and as the dependence grows, the upper and lower bounds collapse in the sense that the upper bound tends to smaller and the lower bound becomes larger. Section 4 concludes the paper with some illustrative examples.

Throughout this paper, the term ‘increasing’ and ‘decreasing’ mean ‘non-decreasing’ and ‘non-increasing’ respectively, and the measurability of sets and functions as well as the existence of expectations are often assumed without explicit mention. Any inequality between two vectors with finite or infinite dimensions means the inequalities component-wise.

2 Dependence Properties of Multivariate Ruin Probabilities

To compare the dependence of random vectors, we fix the marginal distributions, and compare their joint distributions in some sense. There are several dependence comparison methods and we here utilize the supermodular comparison.

Definition 2.1. Let $\mathbf{X} = (X_1, \ldots, X_m)$ and $\mathbf{Y} = (Y_1, \ldots, Y_m)$ be two \mathbb{R}^m-valued random vectors.

1. \mathbf{X} is said to be larger than \mathbf{Y} in stochastic order, denoted by $\mathbf{X} \succeq_{st} \mathbf{Y}$, if $Ef(\mathbf{X}) \geq Ef(\mathbf{Y})$ for all increasing functions f.

2. \mathbf{X} is said to be more dependent than \mathbf{Y} in supermodular order, denoted by $\mathbf{X} \succeq_{sm} \mathbf{Y}$,
if \(Ef(X) \geq Ef(Y) \) for all supermodular functions \(f \); that is, functions satisfying that for all \(x, y \in \mathcal{R}^m \),

\[
f(x \lor y) + f(x \land y) \geq f(x) + f(y),
\]

where \(x \lor y \) denotes the vector of component-wise maximums, and \(x \land y \) denotes the vector of component-wise minimums.

These stochastic orders have many useful properties and applications, and are studied in details in Marshall and Olkin (1979), Shaked and Shanthikumar (1994), and Müller and Stoyan (2002), and references therein. The following properties are frequently used in this and the next sections.

Lemma 2.2. Let \(X = (X_1, \ldots, X_m) \) and \(Y = (Y_1, \ldots, Y_m) \) be two \(\mathcal{R}^m \)-valued random vectors.

1. If \(X \succeq_{sm} Y \), then \((f_1(X_1), \ldots, f_m(X_m)) \succeq_{sm} (f_1(Y_1), \ldots, f_m(Y_m)) \) for any functions \(f_1, \ldots, f_m \) that are all increasing or all decreasing.

2. If \(X \succeq_{sm} Y \), then \(X_j \) and \(Y_j \) have the same marginal distribution for any \(j = 1, \ldots, m \), and

\[
P(X_1 > x_1, \ldots, X_m > x_m) \geq P(Y_1 > x_1, \ldots, Y_m > x_m),
\]

\[
P(X_1 \leq x_1, \ldots, X_m \leq x_m) \geq P(Y_1 \leq x_1, \ldots, Y_m \leq x_m),
\]

for any \((x_1, \ldots, x_m)\).

Thus, if \(X \succeq_{sm} Y \), then \(Cov(X_i, X_j) \geq Cov(Y_i, Y_j) \) for any \(i \neq j \).

Consider two multivariate compound risk models \(M_1 \) and \(M_2 \) introduced in Section 1. To compare the effect of the dependence of claim sizes on the ruin probabilities, we suppose that \(M_1 \) and \(M_2 \) have the same claim event arrival process \(\{N(t), t \geq 0\} \), same premium rates \(p_j, 1 \leq j \leq m \), and same initial reserves \(u_j, 1 \leq j \leq m \), but different claim size vectors \(X_n = (X_{1,n}, \ldots, X_{m,n}) \) and \(Y_n = (Y_{1,n}, \ldots, Y_{m,n}) \), respectively. Let \(\psi_{\text{and}}^X(u_1, \ldots, u_m) (\psi_{\text{and}}^Y(u_1, \ldots, u_m)), \psi_{\text{or}}^X(u_1, \ldots, u_m) (\psi_{\text{or}}^Y(u_1, \ldots, u_m)) \), and \(\psi_{\text{sim}}^X(u_1, \ldots, u_m) (\psi_{\text{sim}}^Y(u_1, \ldots, u_m)) \) denote the ruin probabilities of types (1.2), (1.3), and (1.4), respectively, in model \(M_1 (M_2) \).

Theorem 2.3. If \(X_n \succeq_{sm} Y_n \), then we have, for any nonnegative \(u_1, \ldots, u_m \),

1. \(\psi_{\text{and}}^X(u_1, \ldots, u_m) \geq \psi_{\text{and}}^Y(u_1, \ldots, u_m) \),

2. \(\psi_{\text{or}}^X(u_1, \ldots, u_m) \leq \psi_{\text{or}}^Y(u_1, \ldots, u_m) \), and
3. $\psi^X_{\text{sim}}(u_1, \ldots, u_m) \geq \psi^Y_{\text{sim}}(u_1, \ldots, u_m)$.

Proof. (1) It suffices to show that given that $N(t) = n(t), t \geq 0$,

$$\psi^X_{\text{and}}(u_1, \ldots, u_m) \geq \psi^Y_{\text{and}}(u_1, \ldots, u_m). \quad (2.3)$$

Without loss of generality, we assume that $\{X_n, n \geq 1\}$ and $\{Y_n, n \geq 1\}$ are independent. For fixed positive integer k, let

$$Z_n = Y_n, n = 1, \ldots, k \quad Z_n = X_n, n > k.$$

Let $\psi^Z_k(u_1, \ldots, u_m)$ denote the ruin probabilities of type (1.2) in the multivariate compound risk model with the claim event arrival process $N(t)$, premium rates $p_j, 1 \leq j \leq m$, initial reserves $u_j, 1 \leq j \leq m$, and claim size vectors $\{Z_n, n \geq 1\}$. Also let

$$S^X_j(t) = \sum_{n=1}^{N(t)} X_{j,n} - p_j t, j = 1, \ldots, m$$
$$S^Y_j(t) = \sum_{n=1}^{N(t)} Y_{j,n} - p_j t, j = 1, \ldots, m$$
$$S_j(t) = \sum_{n=1}^{N(t)} Z_{j,n} - p_j t, j = 1, \ldots, m.$$

Conditioning on $X_n = x_n, n > k$, $\sup_{0 \leq t < \infty} S^X_j(t)$ is an increasing function of $X_{j,1}, \ldots, X_{j,k}$, and $\sup_{0 \leq t < \infty} S_j(t)$ is an increasing function of $Y_{j,1}, \ldots, Y_{j,k}, 1 \leq j \leq m$. Since X_1, \ldots, X_k are i.i.d., and Y_1, \ldots, Y_k are i.i.d, and $X_n \succeq_{\text{sm}} Y_n$, we invoke Lemma 2.2 (1) k times, and obtain that conditioning on $X_n = x_n, n > k$,

$$\left(\sup_{0 \leq t < \infty} S^X_1(t), \ldots, \sup_{0 \leq t < \infty} S^X_m(t) \right) \succeq_{\text{sm}} \left(\sup_{0 \leq t < \infty} S_1(t), \ldots, \sup_{0 \leq t < \infty} S_m(t) \right).$$

It follows from unconditioning and (2.1) that for any k

$$\psi^X_{\text{and}}(u_1, \ldots, u_m) \geq \psi^Z_k(u_1, \ldots, u_m).$$

Observe that as $k \to \infty$, $\psi^Z_k(u_1, \ldots, u_m)$ converges to $\psi^Y_{\text{and}}(u_1, \ldots, u_m)$ for any u_1, \ldots, u_m. Thus, we establish (2.3) conditioning on $N(t) = n(t), t \geq 0$.

(2) Using a similar idea as in (1) above (using (2.2), instead of (2.1)), we can also show that

$$P \left(\sup_{0 \leq t < \infty} S^X_1(t) \leq u_1, \ldots, \sup_{0 \leq t < \infty} S^X_m(t) \leq u_1 \right) \geq P \left(\sup_{0 \leq t < \infty} S^Y_1(t) \leq u_1, \ldots, \sup_{0 \leq t < \infty} S^Y_m(t) \leq u_1 \right).$$
Therefore,

\[
\psi^X_{or}(u_1, \ldots, u_m) = 1 - P \left(\sup_{0 \leq t < \infty} S_1^X(t) \leq u_1, \ldots, \sup_{0 \leq t < \infty} S_m^X(t) \leq u_m \right) \\
\leq 1 - P \left(\sup_{0 \leq t < \infty} S_1^Y(t) \leq u_1, \ldots, \sup_{0 \leq t < \infty} S_m^Y(t) \leq u_1 \right) = \psi^Y_{or}(u_1, \ldots, u_m).
\]

(3) Notice that \(\psi_{sim}(u_1, \ldots, u_m) \) is the probability that ruin occurs at all the sub-portfolios at the same time, and unlike (1.2) and (1.3), is not a separate functional of the claim surplus processes of these sub-portfolios. Thus, in this case, we need some extra work.

Let

\[
\bar{S}_j^X(t) = S_j^X(t) - u_j, \quad \bar{S}_j^Y(t) = S_j^Y(t) - u_j, \quad 1 \leq j \leq m.
\]

Also let

\[
S^X_{(1)}(t) = \min \{ S_1^X(t), \ldots, S_m^X(t) \}, \\
\bar{S}^Y_{(1)}(t) = \min \{ \bar{S}_1^Y(t), \ldots, \bar{S}_m^Y(t) \}.
\]

Since

\[
\psi^X_{sim}(u_1, \ldots, u_m) = 1 - P \left(\sup_{0 \leq t < \infty} \bar{S}^X_{(1)}(t) \leq 0 \right) = 1 - P \left(\bar{S}^X_{(1)}(t) \leq 0 \text{ for all } t \geq 0 \right),
\]

\[
\psi^Y_{sim}(u_1, \ldots, u_m) = 1 - P \left(\sup_{0 \leq t < \infty} \bar{S}^Y_{(1)}(t) \leq 0 \right) = 1 - P \left(\bar{S}^Y_{(1)}(t) \leq 0 \text{ for all } t \geq 0 \right),
\]

we need to show that

\[
P \left(\bar{S}^X_{(1)}(t) \leq 0 \text{ for all } t \geq 0 \right) \leq P \left(\bar{S}^Y_{(1)}(t) \leq 0 \text{ for all } t \geq 0 \right).
\]

Since the sample paths of the counting process \(\{ N(t), t \geq 0 \} \) are right-continuous with left-limits, it suffices to show that for any \(0 \leq t_1 \leq t_2 \leq \cdots \leq t_l < \infty \),

\[
P \left(S^X_{(1)}(t_1) \leq 0, \ldots, S^X_{(1)}(t_l) \leq 0 \right) \leq P \left(\bar{S}^Y_{(1)}(t_1) \leq 0, \ldots, \bar{S}^Y_{(1)}(t_l) \leq 0 \right),
\]

which can be rephrased as

\[
P \left(\bigcap_{i=1}^{l} \bigcup_{j=1}^{m} \{ S^X_j(t_i) \leq 0 \} \right) \leq P \left(\bigcap_{i=1}^{l} \bigcup_{j=1}^{m} \{ \bar{S}^Y_j(t_i) \leq 0 \} \right).
\]
We first observe that for any real numbers a_1, \ldots, a_l and any n, we have,

$$P\left(\bigcap_{i=1}^{l} \bigcup_{j=1}^{m} \{X_{j,n} \leq a_i\} \right) = P\left(\bigcap_{i=1}^{l} \{\min \{X_{1,n}, \ldots, X_{m,n}\} \leq a_i\} \right)$$

$$= P\left(\min \{X_{1,n}, \ldots, X_{m,n}\} \leq \min \{a_1, \ldots, a_l\}\right)$$

$$= 1 - P\left(X_{1,n} > \min \{a_1, \ldots, a_l\}, \ldots, X_{m,n} > \min \{a_1, \ldots, a_l\}\right)$$

$$\leq 1 - P\left(Y_{1,n} > \min \{a_1, \ldots, a_l\}, \ldots, Y_{m,n} > \min \{a_1, \ldots, a_l\}\right)$$

$$= P\left(\bigcap_{i=1}^{l} \bigcup_{j=1}^{m} \{Y_{j,n} \leq a_i\} \right),$$

where the inequality follows from (2.1). Thus, for any strictly increasing functions g_1, \ldots, g_l and any n, we have

$$P\left(\bigcap_{i=1}^{l} \bigcup_{j=1}^{m} \{g_i(X_{j,n}) \leq 0\} \right) = P\left(\bigcap_{i=1}^{l} \bigcup_{j=1}^{m} \{X_{j,n} \leq g_i^{-1}(0)\} \right)$$

$$\leq P\left(\bigcap_{i=1}^{l} \bigcup_{j=1}^{m} \{Y_{j,n} \leq g_i^{-1}(0)\} \right)$$

$$= P\left(\bigcap_{i=1}^{l} \bigcup_{j=1}^{m} \{g_i(Y_{j,n}) \leq 0\} \right). \quad (2.5)$$

Conditioning on $N(t) = n(t), t \geq 0$, $\tilde{S}_j^X(t_1), \ldots, \tilde{S}_j^X(t_l)$ are strictly increasing functions of $X_{j,n}, 1 \leq n \leq k$, for certain k, where k is finite due to the fact that $\{N(t), t \geq 0\}$ is non-explosive. Similarly, $\tilde{S}_j^Y(t_1), \ldots, \tilde{S}_j^Y(t_l)$ are strictly increasing functions of $Y_{j,n}, 1 \leq n \leq k$. Since X_1, \ldots, X_k are i.i.d., and Y_1, \ldots, Y_k are i.i.d, and $X_n \geq sm Y_n$, we invoke (2.5) k times, and obtain (2.4) conditioning on $N(t) = n(t), t \geq 0$. Finally, unconditioning yields (2.4).

Note that $\psi_{sim}^X(u_1, \ldots, u_m) \leq \psi_{and}^Y(u_1, \ldots, u_m) \leq \psi_{or}^X(u_1, \ldots, u_m)$ for any u_1, \ldots, u_m. Theorem 2.3 shows that, as the claim size vector becomes more correlated in the sense of supermodular order, both $\psi_{sim}^X(u_1, \ldots, u_m)$ and $\psi_{and}^Y(u_1, \ldots, u_m)$ increase, and $\psi_{or}^X(u_1, \ldots, u_m)$ decreases.

3 Stochastic Bounds

Our bounding strategy is to bound the multivariate ruin probabilities (1.2)-(1.4) by some univariate ruin probabilities, which can be calculated for the phase type distributed claims.
Consider a multivariate compound risk model (1.1). Let

\[X_{(1),n} = \min\{X_{1,n}, \ldots, X_{m,n}\}, \quad X_{(m),n} = \max\{X_{1,n}, \ldots, X_{m,n}\}, \]
\[p_{(1)} = \min\{p_1, \ldots, p_m\}, \quad p_{(m)} = \max\{p_1, \ldots, p_m\}, \]
\[u_{(1)} = \min\{u_1, \ldots, u_m\}, \quad u_{(m)} = \max\{u_1, \ldots, u_m\}. \]

Also let

\[\psi_{\min}(u) = P \left(\sup_{0 \leq t < \infty} \left(\sum_{n=1}^{N(t)} X_{(1),n} - p_{(m)}t \right) > u \right), \quad (3.1) \]
\[\psi_{\max}(u) = P \left(\sup_{0 \leq t < \infty} \left(\sum_{n=1}^{N(t)} X_{(m),n} - p_{(1)}t \right) > u \right). \quad (3.2) \]

Clearly, for any nonnegative \((u_1, \ldots, u_m)\),

\[\psi_{\min}(u_{(m)}) \leq \psi_{\min}(u_1, \ldots, u_m) \leq \psi_{\min}(u_{(1)}). \]

Consider now the following two ruin probabilities, for any \(a \in A = \left\{ (a_1, \ldots, a_m) : a_j \geq 0, 1 \leq j \leq m, \text{ and } \sum_{j=1}^{m} a_j > 0 \right\} \),

\[\psi_a(u) = P \left(\sup_{0 \leq t < \infty} \left\{ \sum_{n=1}^{N(t)} \left(\sum_{j=1}^{m} a_j X_{j,n} - \left(\sum_{j=1}^{m} a_j p_j \right) t \right) \right\} > u \right), \quad (3.3) \]
\[\psi_{\sum}(u) = P \left(\sup_{0 \leq t < \infty} \left\{ \sum_{n=1}^{N(t)} \left(\sum_{j=1}^{m} X_{j,n} - \left(\sum_{j=1}^{m} p_j \right) t \right) \right\} > u \right). \quad (3.4) \]

Using the notations in (1.1), we observe that

\[\psi_a \left(\sum_{j=1}^{m} a_j u_j \right) = P \left(\sup_{0 \leq t < \infty} \left\{ \sum_{j=1}^{m} a_j (S_j(t) - u_j) \right\} > 0 \right). \quad (3.5) \]

We point that for any \(a \in A\) if \(p_j > 0, \mu_j \geq 0, \text{ and } tp_j > E(N(t)) E(X_{j,1}) > 0\) for all \(j = 1, \ldots, m\) and \(t > 0\), then \(\sum_{j=1}^{m} a_j p_j > 0, \sum_{j=1}^{m} a_j u_j \geq 0, \text{ and } t \sum_{j=1}^{m} a_j p_j > E(N(t)) \sum_{j=1}^{m} a_j E(X_{j,1}) > 0\). Hence, there are positive premium rates, nonnegative initial capitals, and positive relative security loadings in the ruin probabilities (3.3)-(3.5).
On one hand, for any \((a_1, \ldots, a_m) \in \mathcal{A}\) and some \(t > 0\), the event \(\{S_1(t) > u_1, \ldots, S_m(t) > u_m\}\) implies the event \(\{\sum_{j=1}^{m} a_j(S_j(t) - u_j) > 0\}\) holds. Hence,

\[
\psi_{\text{sim}}(u_1, \ldots, u_m) \leq \psi_a \left(\sum_{j=1}^{m} a_j u_j \right) \tag{3.6}
\]

for any \((a_1, \ldots, a_m) \in \mathcal{A}\).

On the other hand, for any \((a_1, \ldots, a_m) \in \mathcal{A}\) and some \(t > 0\), the event \(\{\sum_{j=1}^{m} a_j(S_j(t) - u_j) > 0\}\) implies that the event \(\{S_j(t) - u_j > 0\}\) for at least one \(j\) holds. Thus, we also have

\[
\psi_a \left(\sum_{j=1}^{m} a_j u_j \right) \leq \psi_{\text{or}}(u_1, \ldots, u_m) \tag{3.7}
\]

for any \((a_1, \ldots, a_m) \in \mathcal{A}\). We summarize all these results in the following proposition.

Proposition 3.1. Let \(\mathcal{A} = \{(a_1, \ldots, a_m) : a_j \geq 0, 1 \leq j \leq m, \text{ and } \sum_{j=1}^{m} a_j > 0\}\).

1. \(\psi_{\text{min}}(u(m)) \leq \psi_{\text{sim}}(u_1, \ldots, u_m) \leq \inf_{a \in \mathcal{A}} \psi_a \left(\sum_{j=1}^{m} a_j u_j \right)\).
2. \(\sup_{a \in \mathcal{A}} \psi_a \left(\sum_{j=1}^{m} a_j u_j \right) \leq \psi_{\text{or}}(u_1, \ldots, u_m) \leq \psi_{\text{max}}(u(1))\).
3. In particular,

\[
\psi_{\text{min}}(u(m)) \leq \psi_{\text{sim}}(u_1, \ldots, u_m) \leq \psi_{\text{sum}} \left(\sum_{j=1}^{m} u_j \right) \leq \psi_{\text{or}}(u_1, \ldots, u_m) \leq \psi_{\text{max}}(u(1))\]

The upper bound in (1) and the lower bound in (2) of Proposition 3.1 have been discussed in Chan et al. (2003). The bounds presented in Proposition 3.1 are the ruin probabilities of univariate risk processes, but depend on the correlation structure of the underlying multivariate compound risk process. To see this, consider two multivariate compound risk models \(\mathcal{M}_1\) and \(\mathcal{M}_2\) introduced in Section 1. Suppose that \(\mathcal{M}_1\) and \(\mathcal{M}_2\) have the same claim event arrival process \(\{N(t), t \geq 0\}\), same premium rates \(p_j\), \(1 \leq j \leq m\), and same initial reserves \(u_j\), \(1 \leq j \leq m\), but different claim size vectors \(X_n = (X_{1,n}, \ldots, X_{m,n})\) and \(Y_n = (Y_{1,n}, \ldots, Y_{m,n})\), respectively. Let \(\psi_{\text{min}}^{X}(u)(\psi_{\text{min}}^{Y}(u)), \psi_{\text{max}}^{X}(u)(\psi_{\text{max}}^{Y}(u))\), and \(\psi_{\text{sum}}^{X}(u)(\psi_{\text{sum}}^{Y}(u))\) denote the ruin probabilities of types (3.1), (3.2), and (3.4), respectively, in model \(\mathcal{M}_1\) \((\mathcal{M}_2)\).

Proposition 3.2. If \(X_n \geq_{\text{sm}} Y_n\), then we have, for any nonnegative \(u\),

1. \(\psi_{\text{min}}^{X}(u) \geq \psi_{\text{min}}^{Y}(u)\),

2. \(\psi_{\text{max}}^{X}(u) \leq \psi_{\text{max}}^{Y}(u)\),
3. \(\psi_{\text{sum}}^{X}(u) \leq \psi_{\text{sum}}^{Y}(u)\)
2. \(\psi_{\text{max}}^X(u) \leq \psi_{\text{max}}^Y(u) \), and
3. \(\psi_{\text{sum}}^X(u) \geq \psi_{\text{sum}}^Y(u) \).

Proof. Clearly, \(X_n \geq_{\text{sm}} Y_n \) implies that
\[
X_{(1),n} \geq_{\text{st}} Y_{(1),n}, \quad X_{(m),n} \leq_{\text{st}} Y_{(m),n}.
\]
Thus, (1) and (2) follow from the fact that \(\psi_{\text{min}}^X(u) (\psi_{\text{max}}^X(u)) \) is the increasing function of \(X_{(1),n} (X_{(m),n}), \ n \geq 1 \). The proof of (3) can be found in Cai and Li (2005).

The univariate bounds established in Proposition 3.1 hold for any claim size vector \(X_n \). If the claim size vector satisfies some positive dependence property, then the product type bounds can be also established. We first review the notions of positive association and supermodular dependence, which can be found, for example, in Tong (1980) and in Müller and Stoyan (2002).

Definition 3.3. Let \(X = (X_1, \ldots, X_m) \) be a real random vector.

1. \(X \) is said to be positively associated if
 \[
 E[f(X)g(X)] \geq Ef(X)Eg(X) \quad (3.8)
 \]
 for any real increasing functions \(f, g \) defined on \(\mathbb{R}^m \).
2. \(X \) is said to be supermodular dependent if
 \[
 (X_1, \ldots, X_m) \geq_{\text{sm}} (X_1^I, \ldots, X_m^I), \quad (3.9)
 \]
 where \(X_1^I, \ldots, X_m^I \) are independent, and \(X_j^I \) and \(X_j \), \(1 \leq j \leq m \), have the same marginal distribution.

Both association and supermodular dependence yield the following lower bounds of product type for the joint distribution and survival functions.
\[
P(X_1 \leq x_1, \ldots, X_m \leq x_m) \geq \prod_{j=1}^m P(X_j \leq x_j),
\]
\[
P(X_1 > x_1, \ldots, X_m > x_m) \geq \prod_{j=1}^m P(X_j > x_j).
\]

As we will illustrate in Section 4, some random vectors possess both types of positive dependence.
Assuming that the event arrival process $N(t)$ is a Poisson process, Cai and Li (2005a) established the product type lower bound for $\psi_{\text{and}}(u_1, \ldots, u_m)$, by showing that if the claim size vector X_n is associated, then

$$\left(\sup_{0 \leq t < \infty} S_1(t), \ldots, \sup_{0 \leq t < \infty} S_m(t) \right)$$

(3.10)
is also associated. This result also yields the product type upper bound for $\psi_{\text{or}}(u_1, \ldots, u_m)$.

Proposition 3.4. For the multivariate compound Poisson risk model with a Poisson event arrival process and positively associated claim vector, we have

$$\prod_{j=1}^m \psi_j(u_j) \leq \psi_{\text{and}}(u_1, \ldots, u_m) \leq \psi_{\text{or}}(u_1, \ldots, u_m) \leq 1 - \prod_{j=1}^m (1 - \psi_j(u_j))$$

for any non-negative u_1, \ldots, u_m, where $\psi_j(u_j) = P\left(\sup_{0 \leq t < \infty} S_j(t) > u_j \right)$, $1 \leq j \leq m$.

Proof. The first inequality follows from the association property of (3.10) (Cai and Li 2005a). The third inequality follows from the fact that

$$\psi_{\text{or}}(u_1, \ldots, u_m) = 1 - P\left(\sup_{0 \leq t < \infty} S_1(t) \leq u_1, \ldots, \sup_{0 \leq t < \infty} S_m(t) \leq u_m \right)$$

(3.11)

and the association property of (3.10).

If the claim size vector possesses the supermodular dependence, the same bounds still hold.

Proposition 3.5. For the multivariate compound Poisson risk model with a Poisson event arrival process and supermodular dependent claim vector, we have

$$\prod_{j=1}^m \psi_j(u_j) \leq \psi_{\text{and}}(u_1, \ldots, u_m) \leq \psi_{\text{or}}(u_1, \ldots, u_m) \leq 1 - \prod_{j=1}^m (1 - \psi_j(u_j))$$

for any non-negative u_1, \ldots, u_m, where $\psi_j(u_j) = P\left(\sup_{0 \leq t < \infty} S_j(t) > u_j \right)$, $1 \leq j \leq m$.

Proof. We only establish the first inequality, and the third inequality follows in the same way as Proposition 3.4 via (3.11). For this, consider (1.1) and (1.2) with a Poisson event arrival process $N(t)$.

For each claim size vector $X_n = (X_{1,n}, \ldots, X_{m,n})$, let $X^I_n = (X^I_{1,n}, \ldots, X^I_{m,n})$ be the vector in which $X^I_{1,n}, \ldots, X^I_{m,n}$ are independent, and $X^I_{j,n}$ and $X_{j,n}$ have the same marginal distribution, $1 \leq j \leq m$. Also let

$$\psi^I_{\text{and}}(u_1, \ldots, u_m) = P\left(\bigcap_{j=1}^m \left\{ \sup_{0 \leq t < \infty} (S^I_j(t)) > u_j \right\} \right),$$

12
where $S^I_j(t) = \sum_{n=1}^{N(t)} X^I_{j,n} - p_j t$, $1 \leq j \leq m$. Since X_n is supermodular dependent, we have $X_n \succeq_{sm} X^I_n$. Thus, from Theorem 2.3, we have

$$
\psi_{\text{and}}(u_1, \ldots, u_m) \geq \psi^I_{\text{and}}(u_1, \ldots, u_m).
$$

We need to show that $\psi^I_{\text{and}}(u_1, \ldots, u_m) \geq \prod_{j=1}^m \psi_j(u_j)$. Since $N(t)$ is a Poisson process, then

$$
N(t) = \max \left\{ n : \sum_{i=1}^n E_i \leq t \right\},
$$

where E_i's are i.i.d. exponential random variables with a mean of $1/\lambda$. From the Lorentz’s inequality (see, for example, Müller and Stoyan 2002), we have, for any $i \geq 1$,

$$
\left(E_i, \ldots, E_i \right) \succeq_{sm} (E_{1,i}, \ldots, E_{m,i}),
$$

(3.12)

where $E_{j,i}$'s are i.i.d. exponential random variables with a mean of $1/\lambda$. For any $1 \leq j \leq m$, let $N_j(t)$ denote a Poisson process with inter-event arrival times $E_{j,i}$, $i \geq 1$. Obviously, Poisson processes $\{N_j(t), t \geq 0\}$, $1 \leq j \leq m$, are independent. Let, for each $1 \leq j \leq m$, $N^k_j(t) = N_j(t)$ given that $E_{j,i} = z_i$, $i \geq k + 1$.

Conditioning on $X^I_n = (x_{1,n}, \ldots, x_{m,n})$, $n \geq 1$, and $E_i = z_i$, $i \geq k + 1$, $\sup_{0 \leq t < \infty} S_j(t)$, $1 \leq j \leq m$, is a decreasing function of E_1, \ldots, E_k. Because of (3.12), we invoke Lemma 2.2 (1) k times, and obtain that

$$
\psi^I_{\text{and}}(u_1, \ldots, u_m) \geq P \left(\bigcap_{j=1}^m \left\{ \sup_{0 \leq t < \infty} \left(\sum_{n=1}^{N^k_j(t)} x_{j,n} - p_j t \right) > u_j \right\} \right).
$$

As $k \to \infty$, we obtain that

$$
\psi^I_{\text{and}}(u_1, \ldots, u_m) \geq P \left(\bigcap_{j=1}^m \left\{ \sup_{0 \leq t < \infty} \left(\sum_{n=1}^{N_j(t)} x_{j,n} - p_j t \right) > u_j \right\} \right).
$$

Unconditioning on X^I_n, $n \geq 1$, we have

$$
\psi^I_{\text{and}}(u_1, \ldots, u_m) \geq P \left(\bigcap_{j=1}^m \left\{ \sup_{0 \leq t < \infty} \left(\sum_{n=1}^{N_j(t)} X^I_{j,n} - p_j t \right) > u_j \right\} \right)
$$

$$
= \prod_{j=1}^m P \left(\left\{ \sup_{0 \leq t < \infty} \left(\sum_{n=1}^{N_j(t)} X^I_{j,n} - p_j t \right) > u_j \right\} \right) = \prod_{j=1}^m \psi_j(u_j).
$$

Hence $\psi_{\text{and}}(u_1, \ldots, u_m) \geq \prod_{j=1}^m \psi_j(u_j)$.

\[\square\]
To calculate these bounds explicitly, we utilize the multivariate phase type distribution to model the claim size vector. Let \(\{X(t), t \geq 0\} \) be a right-continuous, continuous-time Markov chain on a finite state space \(\mathcal{E} \) with generator \(Q \). Let \(\mathcal{E}_i, i = 1, \ldots, m, \) be \(m \) nonempty stochastically closed subsets of \(\mathcal{E} \) such that \(\cap_{i=1}^m \mathcal{E}_i \) is a proper subset of \(\mathcal{E} \). (A subset of the state space is said to be stochastically closed if once the process \(\{X(t), t \geq 0\} \) enters it, \(\{X(t), t \geq 0\} \) never leaves). We assume that absorption into \(\cap_{i=1}^m \mathcal{E}_i \) is certain. Since we are interested in the process only until it is absorbed into \(\cap_{i=1}^m \mathcal{E}_i \), we may assume, without loss of generality, that \(\cap_{i=1}^m \mathcal{E}_i \) consists of one state, which we shall denote by \(\Delta \). Thus, without loss of generality, we may write \(\mathcal{E} = (\cup_{i=1}^m \mathcal{E}_i) \cup \mathcal{E}_0 \) for some subset \(\mathcal{E}_0 \subset \mathcal{E} \) with \(\mathcal{E}_0 \cap \mathcal{E}_j = \emptyset \) for \(1 \leq j \leq m \). The states in \(\mathcal{E} \) are enumerated in such a way that \(\Delta \) is the first element of \(\mathcal{E} \). Thus, the generator of the chain has the form

\[
Q = \begin{bmatrix}
0 & 0 \\
-Ae & A
\end{bmatrix},
\]

where \(0 = (0, \ldots, 0) \) is the \(d \)-dimensional row vector of zeros, \(e = (1, \ldots, 1)^T \) is the \(d \)-dimensional column vector of 1’s, sub-generator \(A \) is a \(d \times d \) nonsingular matrix, and \(d = |\mathcal{E}| - 1 \). Let \(\beta = (0, \alpha) \) be an initial probability vector on \(\mathcal{E} \) such that \(\beta(\Delta) = 0 \).

We define

\[
X_i = \inf \{t \geq 0 : X(t) \in \mathcal{E}_i\}, \quad i = 1, \ldots, m.
\]

As in Assaf et al. (1984), for simplicity, we shall assume that \(P(X_1 > 0, \ldots, X_m > 0) = 1 \), which means that the underlying Markov chain \(\{X(t), t \geq 0\} \) starts within \(\mathcal{E}_0 \) almost surely. The joint distribution of \((X_1, \ldots, X_m) \) is called a multivariate phase type distribution (MPH) with representation \((\alpha, A, \mathcal{E}, \mathcal{E}_1, \ldots, \mathcal{E}_m)\), and \((X_1, \ldots, X_m)\) is called a phase type random vector.

When \(m = 1 \), the distribution of (3.14) reduces to the univariate PH distribution introduced in Neuts (1981) (See Section 1). Examples of MPH distributions include, among many others, the well-known Marshall-Olkin distribution (Marshall and Olkin 1967). The MPH distributions, their properties, and some related applications in reliability theory were discussed in Assaf et al. (1984). As in the univariate case, those MPH distributions (and their densities, Laplace transforms and moments) can be written in a closed form. The set of \(m \)-dimensional MPH distributions is dense in the set of all distributions on \([0, \infty)^m\). It is also shown in Assaf et al. (1984) and in Kulkarni (1989) that MPH distributions are closed under marginalization, finite mixture, convolution, and the formation of coherent systems. The following lemma, taken from Cai and Li (2005b), presents the phase type representations of some closure properties.
Lemma 3.6. Let \((X_1, \ldots, X_m)\) be of phase type with representation \((\alpha, A, \mathcal{E}, \mathcal{E}_1, \ldots, \mathcal{E}_m)\), where \(A = (a_{i,j})\). For any \(S \subseteq \mathcal{E} - \{\Delta\}\), let \(A_S\) denote the sub-matrix of \(A\) consisting of all the transition rates from \(S\) to \(S\), and \(\alpha_S\) is the sub-vector of \(\alpha\) consisting all the probability entries on \(S\). Then

1. \(X_j\) is of phase type with representation \(\left(\frac{\alpha_{\mathcal{E}_j}}{\alpha_{\mathcal{E}_j}}, A_{\mathcal{E}_j}, |\mathcal{E} - \mathcal{E}_j|\right)\).
2. \(X_{(1)} = \min\{X_1, \ldots, X_m\}\) is of phase type with representation \(\left(\frac{\alpha_{\mathcal{E}_0}}{\alpha_{\mathcal{E}_0}}, A_{\mathcal{E}_0}, |\mathcal{E}_0|\right)\).
3. \(X_{(n)} = \max\{X_1, \ldots, X_m\}\) is of phase type with representation \((\alpha, A, |\mathcal{E}| - 1)\).
4. \(\sum_{i=1}^{n} X_i\) has a phase type distribution with representation \((\alpha, T, |\mathcal{E}| - 1)\), where \(T = (t_{i,j})\) is given by,
 \[t_{i,j} = \frac{a_{i,j}}{k(i)}\] (3.15)
 and \(k(i) = \) number of indexes in \(\{j : i \notin \mathcal{E}_j, 1 \leq j \leq m\}\).

With help from Lemma 3.6 and (1.6), we obtain the explicit expressions of all the bounds in Propositions 3.1 and 3.5 as follows.

Proposition 3.7. Consider the multivariate compound Poisson risk model (1.1) with a Poisson event arrival process of rate \(\lambda\), and phase type distributed claim size vectors with representation \((\alpha, A, \mathcal{E}, \mathcal{E}_1, \ldots, \mathcal{E}_m)\), where \(A = (a_{i,j})\).

1. \(\psi_j(u_j) = -\frac{\lambda}{p_j} \frac{\alpha_{\mathcal{E}_j}}{\alpha_{\mathcal{E}_j}} A_{\mathcal{E}_j}^{-1} \exp\left(\left(A_{\mathcal{E}_j} - \frac{\lambda}{p_j} t_{0} \frac{\alpha_{\mathcal{E}_j}}{\alpha_{\mathcal{E}_j}} A_{\mathcal{E}_j}^{-1}\right) u_j\right) e\), where \(t_0 = -A_{\mathcal{E}_j} e\).
2. \(\psi_{\min}(u_{(m)}) = -\frac{\lambda}{p_{(m)}} \frac{\alpha_{\mathcal{E}_0}}{\alpha_{\mathcal{E}_0}} A_{\mathcal{E}_0}^{-1} \exp\left(\left(A_{\mathcal{E}_0} - \frac{\lambda}{p_{(m)}} t_{0} \frac{\alpha_{\mathcal{E}_0}}{\alpha_{\mathcal{E}_0}} A_{\mathcal{E}_0}^{-1}\right) u_{(m)}\right) e\), where \(t_0 = -A_{\mathcal{E}_0} e\).
3. \(\psi_{\max}(u_{(1)}) = -\frac{\lambda}{p_{(1)}} \alpha A^{-1} \exp\left(\left(A - \frac{\lambda}{p_{(1)}} t_{0} \alpha A^{-1}\right) u_{(1)}\right) e\), where \(t_0 = -A e\).
4. \(\psi_{\sum}(\sum_{j=1}^{m} u_j) = -\frac{\lambda}{\sum_{j=1}^{m} p_j} \alpha T^{-1} \exp\left(\left(T - \frac{\lambda}{\sum_{j=1}^{m} p_j} t_{0} \alpha T^{-1}\right) \left(\sum_{j=1}^{m} u_j\right)\right) e\), where \(t_0 = -T e\), and \(T\) is defined as in (3.15).

4 Multivariate Compound Poisson Risk Models with Marshall-Olkin Distributed Claims

In this section, we illustrate our results using the multivariate Marshall-Olkin distribution, and also show some interesting effects of different parameters on the bounds.
Let \(\{ E_s, S \subseteq \{1, \ldots, m\} \} \) be a sequence of independent, exponentially distributed random variables, with \(E_s \) having mean \(1/\lambda_s \). Let

\[
X_j = \min \{ E_s : S \ni j \}, \quad j = 1, \ldots, m.
\]

(4.1)
The joint distribution of \((X_1, \ldots, X_m)\) is called the Marshall-Olkin distribution with parameters \(\{ \lambda_s, S \subseteq \{1, \ldots, m\} \} \) (Marshall and Olkin 1967). In the reliability context, \(X_1, \ldots, X_m \) can be viewed as the lifetimes of \(m \) components operating in a random shock environment where a fatal shock governed by Poisson process \(\{ N_S(t), t \geq 0 \} \) with rate \(\lambda_s \) destroys all the components with indexes in \(S \subseteq \{1, \ldots, m\} \) simultaneously. Assume that these Poisson shock arrival processes are independent, then,

\[
X_j = \inf \{ t : N_S(t) \geq 1, S \ni j \}, \quad j = 1, \ldots, m.
\]

(4.2)
Let \(\{ M_S(t), t \geq 0 \}, S \subseteq \{1, \ldots, m\} \), be independent Markov chains with absorbing state \(\Delta_S \), each representing the exponential distribution with parameter \(\lambda_s \). It follows from (4.2) that \((X_1, \ldots, X_m)\) is of phase type with the underlying Markov chain on the product space of these independent Markov chains with absorbing classes \(\mathcal{E}_j = \{ (e_s) : e_s = \Delta_S \text{ for some } S \ni j \}, 1 \leq j \leq m \). It is also easy to verify that the marginal distribution of the \(j \)-th component of the Marshall-Olkin distributed random vector is exponential with mean \(1/\sum_{S:S \ni j} \lambda_s \).

It follows from (4.1) that any Marshall-Olkin distribution is positively associated and supermodular dependent. Thus, from Proposition 3.5, we have

\[
\left(\prod_{j=1}^m \frac{1}{1 + \theta_j} \right) \exp \left(-\sum_{j=1}^m \frac{\theta_j}{1 + \theta_j} \left(\sum_{S: S \ni j} \lambda_s \right) u_j \right) \leq \psi_{\text{and}}(u_1, \ldots, u_m),
\]

\[
\psi_{\text{or}}(u_1, \ldots, u_m) \leq 1 - \prod_{j=1}^m \left[1 - \frac{1}{1 + \theta_j} \exp \left(-\left\{ \frac{\theta_j}{1 + \theta_j} \left(\sum_{S: S \ni j} \lambda_s \right) u_j \right\} \right) \right],
\]

for any non-negative \(u_1, \ldots, u_m \), where the relative security loading \(\theta_j = \left(\sum_{S: S \ni j} \lambda_s \right) p_j / \lambda - 1 \), \(1 \leq j \leq m \).

To calculate the other bounds, we need to simplify the underlying Markov chain for the Marshall-Olkin distribution and obtain its phase type representation. Let \(\{ X(t), t \geq 0 \} \) be a Markov chain with state space \(\mathcal{E} = \{ S : S \subseteq \{1, \ldots, m\} \} = \{ \Delta, e_1, \ldots, e_d \} \), and starting at \(\emptyset \) almost surely. The index set \(\{1, \ldots, m\} \) is the absorbing state \(\Delta \), and \(\mathcal{E}_0 = \{ \emptyset \}, \mathcal{E}_j = \{ S : S \ni j \}, j = 1, \ldots, m \).

It follows from (4.2) that its sub-generator is given by \(A = (a_{i,j}) \), where

\[
a_{i,j} = \sum_{L: L \subseteq S^*, L \cup S = S^*} \lambda_L, \quad \text{if } i = S, j = S^* \text{ and } S \subseteq S^*,
\]

or
\[a_{i,j} = \sum_{L: L \leq S} \lambda_L - \Lambda, \text{ if } i = S \text{ and } \Lambda = \sum_{S} \lambda_S, \]

and zero otherwise. Using the results in Sections 2-3 and these parameters, we can calculate the bounds. To illustrate the results, we consider the bivariate case.

When \(m = 2 \), the state space \(\mathcal{E} = \{12, 2, 1, \emptyset\} \) and \(\mathcal{E}_j = \{12, j\}, j = 1, 2 \), where 12 is the absorbing state. The initial probability vector is \((0, 0, 0, 1)\), and its sub-generator is given by

\[
A = \begin{bmatrix}
-\lambda_{12} - \lambda_1 & 0 & 0 \\
0 & -\lambda_{12} - \lambda_2 & 0 \\
\lambda_2 & \lambda_1 & -\Lambda + \lambda_\emptyset
\end{bmatrix},
\]

where \(\Lambda = \lambda_{12} + \lambda_2 + \lambda_1 + \lambda_\emptyset \).

To study the effect of dependence on the bounds, we calculate \(\psi_{\text{min}}(u_{(m)}) \), \(\psi_{\text{max}}(u_{(1)}) \), \(\psi_{\text{sum}}(u_1 + u_2) \) and the product type bounds in Proposition 3.5, respectively, under several different sets of model parameters in the following example.

Example 4.1. Assume that \(\lambda = 1.6 \) and \(p_1 = p_2 = 3 \). Let \(\rho \) be the correlation coefficient between the claim vector \((X_{1,n}, X_{2,n})\). Then, it is not hard to find that

\[
\rho = \frac{\lambda_{12}}{\lambda_1 + \lambda_2 + \lambda_{12}}.
\]

Note that none of \(\rho \) and the matrix \(A \) in (4.3) involves \(\lambda_\emptyset \). We introduce \(\lambda_\emptyset \) in the model because we want to change the model parameters in a systematic fashion according to supermodular order, so that the effect of claim dependence on the ruin probabilities can be investigated.

We consider the following three cases of the claim vector \((X_{1,n}, X_{2,n})\). The correlation coefficients in the three cases are increasing, which indicates the increasing (linear) dependence of the claim vector in the three cases. In fact, it follows from Li and Xu (2000) that the claim size vector in Case 1 is less dependent than that in Case 2, which, in turn, is less dependent than that in Case 3, all in supermodular order. The analytic forms of these bounds in the three cases and the numerical values in Tables 1 and 2 were easily produced by Mathematica by using the formulas given in Proposition 3.7.

The first column of the Tables lists several values of \(u_1 \) and \(u_2 \), and the next several columns list values of these bounds in the following three cases.

Case 1 - independent claim vector: Let \(\lambda_{12} = 0, \lambda_1 = 1.15, \lambda_2 = 1.17, \lambda_\emptyset = 0 \). Then
the claim vector \((X_{1,n}, X_{2,n})\) is independent with \(\rho = 0\) and

\[
\psi_{\min}(u) = 0.229885 e^{-1.7866u},
\psi_{\text{sum}}(2u) = 0.516615 e^{-0.909286u} - 0.056811 e^{-3.19738u},
\psi_{\max}(u) = 0.712874 e^{-0.31756u} + 0.0000250601 e^{-1.16014u} - 0.0231758 e^{-2.62897u},
\psi_1(u) = 0.463768 e^{-0.616667u}, \psi_2(u) = 0.455840 e^{-0.636667u}.
\]

Note that even the claim sizes are independent, but the claim surplus processes are still positively dependent.

Case 2 - slightly dependent claim vector: Let \(\lambda_{12} = 0.18, \lambda_1 = 0.97, \lambda_2 = 0.99, \lambda_0 = 0.18\). Then the claim vector \((X_{1,n}, X_{2,n})\) is slightly dependent with \(\rho = 0.0841\) and

\[
\psi_{\min}(u) = 0.249221 e^{-1.60667u},
\psi_{\text{sum}}(2u) = 0.513675 e^{-0.880331u} - 0.0000160242 e^{-2.31993u} - 0.0538543 e^{-3.0464u},
\psi_{\max}(u) = 0.694215 e^{-0.336674u} + 0.0000266203 e^{-1.16014u} - 0.0238541 e^{-2.42985u},
\psi_1(u) = 0.463768 e^{-0.616667u}, \psi_2(u) = 0.455840 e^{-0.636667u}.
\]

Case 3 - highly dependent vector: Let \(\lambda_{12} = 1.1, \lambda_1 = 0.05, \lambda_2 = 0.07, \lambda_0 = 1.1\). Then the claim vector \((X_{1,n}, X_{2,n})\) is highly dependent with \(\rho = 0.9016\) and

\[
\psi_{\min}(u) = 0.437158 e^{-0.686667u},
\psi_{\text{sum}}(2u) = 0.465657 e^{-0.6483u} - 0.00111286 e^{-2.31406u} - 0.0047396 e^{-2.36431u},
\psi_{\max}(u) = 0.485566 e^{-0.576616u} + 0.000041294 e^{-1.16093u} - 0.00315671 e^{-1.26912u},
\psi_1(u) = 0.463768 e^{-0.616667u}, \psi_2(u) = 0.455840 e^{-0.636667u}.
\]

In all the three cases, the marginal distributions of \(X_{1,n}\) and \(X_{2,n}\) are the same. Indeed, \(X_{1,n}\) and \(X_{2,n}\) have exponential distributions with means \(1/(\lambda_1 + \lambda_{12}) = 1/1.15\) and \(1/(\lambda_2 + \lambda_{12}) = 1/1.17\), respectively.

The product type bounds in Proposition 3.5 are the functions of the ruin probabilities \(\psi_1(u)\) and \(\psi_2(u)\), which do not depend on the dependence structure of the claim vector \((X_{1,n}, X_{2,n})\). Since these bounds are obtained for independent claim surplus processes, the bounds in Proposition 3.5 should out-perform (under-perform) those in Proposition 3.1 when the claim vector \((X_{1,n}, X_{2,n})\) is slightly (highly) dependent. Indeed, the tables show that the bounds in Proposition 3.5 are better than those in Proposition 3.1 in Cases 1 and 2 for independent or slightly dependent claim vectors while the bounds in Proposition 3.1 are
better than those in Proposition 3.5 in Case 3 for highly dependent claim vectors. Note, however, that the bounds in Proposition 3.5 are not sharp for independent claim vectors.

The tables also show that, serving as lower and upper bounds for $\psi_{\text{sim}}(u_1, u_2)$, the lower bound $\psi_{\text{min}}(u_2)$ and the upper bound $\psi_{\text{sum}}(u_1 + u_2)$ are tighter in Case 3 than in Cases 1 and 2. Similarly, serving as lower and upper bounds for $\psi_{\text{or}}(u_1, u_2)$, the lower bound $\psi_{\text{sum}}(u_1 + u_2)$ and the upper bound $\psi_{\text{max}}(u_1)$ are tighter in Case 3 than in Cases 1 and 2. Indeed, in the extremal case or the comonotone case where $X_{1,n} = X_{2,n}$, we have $\psi_{\text{min}}(u_2) = \psi_{\text{sim}}(u_1, u_2) = \psi_{\text{sum}}(u_1 + u_2) = \psi_{\text{and}}(u_1, u_2) = \psi_{\text{or}}(u_1, u_2) = \psi_{\text{max}}(u_1)$. This further indicates that the bounds in Proposition 3.1 are better for highly dependent claim vectors.

In addition, as proved in Proposition 3.2, the tables display that $\psi_{\text{min}}(u) (\psi_{\text{sum}}(u))$ and $\psi_{\text{max}}(u)$ have opposite monotonicity properties when dependence among the claim sizes increases.

Table 1: Effects of dependence on the bounds for $\psi_{\text{sim}}(u_1, u_2)$.

<table>
<thead>
<tr>
<th>u_1</th>
<th>u_2</th>
<th>$\psi_{\text{min}}(u_2)$</th>
<th>$\prod_{j=1}^{2} \psi_j(u_j)$</th>
<th>$\psi_{\text{sum}}(u_1 + u_2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0.5</td>
<td>0.09409</td>
<td>0.11297</td>
<td>0.31640</td>
</tr>
<tr>
<td>1.0</td>
<td>1.0</td>
<td>0.03851</td>
<td>0.06037</td>
<td>0.20578</td>
</tr>
<tr>
<td>1.5</td>
<td>1.5</td>
<td>0.01576</td>
<td>0.03226</td>
<td>0.13161</td>
</tr>
<tr>
<td>2.0</td>
<td>2.0</td>
<td>0.00645</td>
<td>0.01724</td>
<td>0.08373</td>
</tr>
<tr>
<td>2.5</td>
<td>2.5</td>
<td>0.00264</td>
<td>0.00921</td>
<td>0.05318</td>
</tr>
<tr>
<td>3.0</td>
<td>3.0</td>
<td>0.00108</td>
<td>0.00492</td>
<td>0.03376</td>
</tr>
</tbody>
</table>

Table 2: Effects of dependence on the bounds for $\psi_{\text{or}}(u_1, u_2)$.

<table>
<thead>
<tr>
<th>u_1</th>
<th>u_2</th>
<th>$\psi_{\text{sum}}(u_1 + u_2)$</th>
<th>$1 - \prod_{j=1}^{2} (1 - \psi_j(u_j))$</th>
<th>$\psi_{\text{max}}(u_1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0.5</td>
<td>0.31640</td>
<td>0.55931</td>
<td>0.60200</td>
</tr>
<tr>
<td>1.0</td>
<td>1.0</td>
<td>0.20578</td>
<td>0.51725</td>
<td>0.57960</td>
</tr>
<tr>
<td>1.5</td>
<td>1.5</td>
<td>0.13161</td>
<td>0.43111</td>
<td>0.49368</td>
</tr>
<tr>
<td>2.0</td>
<td>2.0</td>
<td>0.08373</td>
<td>0.42429</td>
<td>0.51725</td>
</tr>
<tr>
<td>2.5</td>
<td>2.5</td>
<td>0.05318</td>
<td>0.41834</td>
<td>0.39852</td>
</tr>
<tr>
<td>3.0</td>
<td>3.0</td>
<td>0.03376</td>
<td>0.35387</td>
<td>0.51725</td>
</tr>
</tbody>
</table>
References

